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Abstract

This study examines qualitatively and quantitatively the impact of the complexity

of the elicitation mechanism and of the valuation of choice objects on preference rev-

elation. Using a large representative sample of the Dutch population, we assess the

extent to which complexity can help account for the willingness-to-accept (WTA) and

willingness-to-pay (WTP) gap which is widely attributed to non-standard preferences

such as loss aversion. We elicited from each participant the WTA-WTP gap for mon-

etary lotteries, and measured the complexity of the price list elicitation mechanism

and of the valuation of lotteries. We show that complexity measures systematically

relate to the WTA-WTP gap of the lotteries and account for approximately 50% of

the gap. Further, complexity explains a significant portion of the WTA-WTP gap

across diverse subgroups, while loss aversion shows explanatory potential only among

participants who experienced little complexity.
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1 Introduction

Revealing unobservable preferences from observable choices is critical in economic analyses.

One significant challenge in the revealed preference approach is that decision-makers may

find the choice situation too complex to make informed decisions. In the absence of effective

ways to simplify the choice situation, complexity could lead to systemic biases and noise

in decision-making, thus distorting the inference of underlying preferences.

Two forms of complexity have gained increasing attention. In the first form, decision

makers may find some preference elicitation mechanisms too complex (referred to as mecha-

nism complexity hereafter) (Plott and Zeiler, 2005, 2007; Cason and Plott, 2014; Smitizsky

et al., 2021). Consequently, they may rely on heuristics to make decisions (Kahneman et al.,

1982). Or, they may confuse one mechanism with another, for instance, misperceiving the

Becker–DeGroot–Marschak mechanism (Becker et al., 1964) – a form of the second-price

auction – as the first-price auction (Cason and Plott, 2014), or the deferred acceptance

mechanism for the Boston mechanism (Rees-Jones and Shorrer, 2023). To overcome mech-

anism complexity, some researchers have sought to develop simpler mechanisms (Li, 2017),

while others have emphasized the need to better describe the mechanisms (Gonczarowski

et al., 2022).

In the second form of complexity, decision-makers may have difficulty forming a clear

valuation for choice objects. We refer to this as valuation complexity. The idea that sub-

jects may not clearly know the value of choice objects is longstanding. Von Neumann and

Morgenstern (1944) comment on the completeness axiom that “it is very dubious, whether

the idealization of reality which treats this postulate as a valid one, is appropriate or even

convenient.”1 In response to valuation complexity, decision makers may behave cautiously

by sticking to the default (Masatlioglu and Ok, 2005), postponing their decisions if pos-

sible (Danan and Ziegelmeyer, 2006), randomizing deliberately (Agranov and Ortoleva,

2017, 2023; Cettolin and Riedl, 2019; Halevy et al., 2023), or using less costly but error-

prone valuation procedures (Oprea, 2022). While these two forms of complexity have been

1Closely related notions have been proposed in the literature. These include incomplete preference
(Bewley, 2002; Masatlioglu and Ok, 2005; Eliaz and Ok, 2006; Ok et al., 2012; Nishimuray and Ok, 2018);
preference imprecision (Dubourg et al., 1994; Butler and Loomes, 2007; Cubitt et al., 2015); and the
recently developed notion of cognitive noise, according to which decision-makers’ mental representation
of the decision situation can be noisy and lead to a range of behavioral anomalies (Khaw et al., 2021;
Woodford, 2020; Frydman and Jin, 2021; Vieider, 2021; Enke and Graeber, 2023; Oprea, 2022).
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widely discussed, few studies have examined them jointly and quantified their behavioral

consequences.

In this study, we qualitatively and quantitatively assess the importance of both forms of

complexity in revealing preferences via the willingness-to-accept and willingness-to-pay gap

(the WTA-WTP gap, henceforth)(Thaler, 1980; Knetsch, 1989; Kahneman et al., 1990).

The WTA-WTP gap holds a central position in the field of behavioral economics and

remains a subject of considerable debate (Ericson and Fuster, 2014). Whereas the WTA-

WTP gap is often interpreted as a manifestation of reference dependence and loss aversion,

it has been proposed and shown that subjects’ misconception about the elicitation mecha-

nism may be responsible for the WTA-WTP gap (Plott and Zeiler, 2005; Cason and Plott,

2014). It has also been hypothesized that valuation complexity may contribute to the

WTA-WTP gap (Dubourg et al., 1994; Bayrak and Hey, 2020; McGranaghan and Otto,

2022; Cerreia-Vioglio et al., 2022). Concretely, when decision-makers are unsure about

the valuation of an object, they act cautiously by bidding a low price when buying it and

asking for a high price when selling it (as in, e.g., the buy-low and sell-high heuristic). This

heuristic can thus result in the WTA-WTP gap. Building on these studies, we conduct a

systematic investigation of the two forms of complexity in the WTA-WTP gap and show

that they are critical in this ongoing debate.

We elicit the WTA and WTP of two monetary lotteries in a within-subject setting using

the price list elicitation mechanism. To assess the complexity of the price list, we elicit

the WTA and WTP of an object with a known preference: a sure payment of 2.5 euro

(denoted as 500 points in the experiment). If subjects are loss averse and fully understand

the incentives of the price list, they would exhibit a WTA-WTP gap for lotteries but not for

the sure payment. On the other hand, if subjects find the price list complex and carry the

heuristic of buy-low and sell-high in real life into the lab or misperceive the selected price

in the list as the final trading price, they may have a WTA-WTP gap for both lotteries

and the sure payment. Furthermore, the WTA-WTP gap for lotteries would correlate

significantly with that for the sure payment.

We assess the valuation complexity of monetary lotteries by eliciting a range of prices

instead of one precise price. Specifically, as in a price list, subjects face a series of choices

between the (fixed) lottery and a (varying) price. Differently, in each choice, subjects
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have three options: the lottery, the sure payment, or the randomization option, where

the computer flips a virtual coin to determine whether subjects receive the lottery or

the sure payment. When subjects find the valuation of the lottery complex, they may

have a range of prices for which they would prefer to choose the randomization option

(Cettolin and Riedl, 2019; Agranov and Ortoleva, 2023; Halevy et al., 2023), and the range

of prices can serve as a (probably conservative) measure of valuation complexity. Based on

the hypothesis that valuation complexity and caution contribute to the WTA-WTP gap

(Cerreia-Vioglio et al., 2022), we test whether subjects with a wider range of prices are

more likely to exhibit a larger WTA-WTP gap.

We examine these two forms of complexity in a large-scale experiment with 1856 par-

ticipants from the LISS (Longitudinal Internet studies for the Social Sciences) panel, a

representative sample of the Dutch population. The LISS panel has been widely used

for surveys and experiments in both economic policies and academic research (see e.g.,

Dimmock et al., 2016; Baillon et al., 2017; Cherchye et al., 2017). From each subject,

we elicited the WTA and WTP for two monetary lotteries, measures of the two forms of

complexity, and a measure of cognitive abilities using matrix reasoning questions from the

International Cognitive Ability Resource (ICAR, Condon and Revelle, 2014).

We have four main observations. First, on average, subjects exhibit a WTA-WTP

gap for both lotteries and the sure payment: The proportion with a positive (negative)

WTA-WTP gap is 58% (27%) for the lotteries and 37% (18%) for the sure payment.

More importantly, the WTA-WTP gap for the lotteries and that for the sure payment are

significantly correlated. Second, subjects have a substantial range of prices (about 20% of

the certainty equivalent of the lottery) and the range is positively linked to the WTA-WTP

of the lotteries. Third, in a set of regression analyses, we show that controlling for the

WTA-WTP gap of the sure payment reduces the WTA-WTP gap for lotteries by about

40%, and controlling for the ranges of prices reduces it by 15%. Controlling for both forms

of complexity reduces it by about 50%. Finally, we find these three patterns are robust

with respect to various specifications and in various demographic subgroups, such as age,

gender, education, and income. Overall, these observations cannot be accounted for by

loss aversion and suggest that the observed WTA-WTP gap for lotteries is partly due to

complexity.
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We do not preclude the loss aversion explanation. When we merge our data with

previous data from Goossens and Knoef (2022), which includes a measure of loss aversion,

we find that loss aversion does not correlate with the WTA-WTP gap in the general

sample, consistent with findings based on representative samples in Chapman et al. (2021)

and Fehr and Kübler (2022). However, the correlation is significant among subjects who

do not experience either form of complexity. Furthermore, the role of loss aversion differs

substantially across subsamples with different cognitive abilities. Among subjects who

performed above the median on the matrix reasoning questions, the WTA-WTP gap is

reduced by 53% when accounting for loss aversion and 35% when accounting for the two

forms of complexity. In contrast, among subjects who performed below the median in

the matrix reasoning questions, the WTA-WTP gap is actually increased by 11% when

accounting for loss aversion and reduced by 83% when accounting for the two forms of

complexity. While loss aversion is considered to be the most prominent preference-based

explanation for the WTA-WTP gap, these results indicate that subjects may exhibit similar

WTA-WTP gaps but differ substantially in the underlying reasons.

Our paper builds on two streams of the literature. First, it relates to understanding the

elicitation of WTA and WTP from the perspective of mechanism complexity. Loomes et al.

(2003) elicited the WTA and WTP of vouchers with a fixed redemption monetary value and

showed that, among subjects who made mistakes, the majority overstated the WTA and

under-reported the WTP, and such bias persisted after repetition. Plott and Zeiler (2005)

systematically demonstrated that subjects’ misconceptions of the experimental tasks, such

as the BDM mechanism, may be an important source for the WTA-WTP gap and suggest

procedures to mitigate such misconceptions (see also Plott and Zeiler, 2007, 2011 and

Isoni et al., 2011 for discussions). Further, Cason and Plott (2014) elicited the WTA for

an object with a known preference, showing that their subjects confused the second-price

auction incentives of the BDM with the first-price auction and asked for a too-high WTA.

Second, this study yields insights into the role of valuation complexity in explaining

various anomalies. Focusing on the WTA-WTP gap, Dubourg et al. (1994) showed that

subjects’ preferences are significantly imprecise, and this imprecision can explain part of

the gap. Bayrak and Hey (2020) propose a model in which decision-makers have a set of

preferences and showed that this model has the potential to explain the valuation gap.
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McGranaghan and Otto (2022) demonstrate that valuation complexity plays a significant

role in generating valuation asymmetries. More recently, Cerreia-Vioglio et al. (2022)

showed theoretically that the WTA-WTP gap could arise from decision-makers who are

unsure about the utility of the choice object and value it with caution.2

Our paper combines the two streams of literature mentioned above and makes several

contributions. First, we jointly examine both forms of complexity and quantitatively assess

their roles in the important anomaly of the WTA-WTP gap. This is possible because our

elicitation of WTA and WTP is within-subject, and the WTA-WTP gap at the individual

subject level provides a natural benchmark for the severity of deviation from classical

theory (Brown et al., 2017, 2021). By examining the reduction of the WTA-WTP gap

after controlling for the two forms of complexity separately and jointly, we can show the

relative importance of each form in explaining the observed gap.

Second, we use a price list elicitation mechanism and assess its complexity. While

the price list elicitation mechanism is widely used and commonly believed to be simpler

than the BDM mechanism, its complexity is less well studied. We demonstrate that the

mechanism complexity of the price list significantly influences behavior even within this

seemingly straightforward elicitation mechanism.

Third, our study considers the WTA-WTP gap in a representative sample of the Dutch

population. Responses from representative samples often play a vital role in policy design,

so it is important to differentiate responses that reflect preferences from noise or biases.

Snowberg and Yariv (2021) compared a wide range of choice behaviors for different subject

pools, including a student population, a representative US sample, and subjects from Ama-

zon Mechanical Turk, showing that, whereas correlations between behaviors were similar

across samples, non-student samples exhibited higher levels of noise. Adding to two recent

studies on the WTA-WTP gap in representative samples (Chapman et al., 2021; Fehr and

Kübler, 2022), our study focuses on the use of heuristics driven by complexity and suggests

that participants with low cognitive ability in the general population may be influenced

2Valuation complexity and caution are also in line with the salience explanation of the WTA-WTP
gap (Bordalo et al., 2012). When facing complex choice objects, decision-makers may not be able to pay
attention to all relevant attributes. Consequently, they may restrict their attention disproportionately to
salient features that could minimize their regret, for example, attractive features when selling and less
attractive features when buying. Sheng et al. (2023) examined the attention mechanism in an eye-tracking
study and differentiated valuation-related and response-related bias underlying the WTA-WTP gap.
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more by complexity.

Finally, our findings have the potential to reconcile some important results regarding

the WTA-WTP gap that may otherwise seem surprising or contradictory. For example,

the exchange between Plott and Zeiler (2005) and Isoni et al. (2011) showed that, after

controlling for subjects’ understanding of the elicitation mechanism, the WTA-WTP gap

disappeared for mugs but persisted for monetary lotteries. While Plott and Zeiler (2011)

did not explicitly identify the underlying mechanism based on their data, they proposed

that lotteries may possess a distinct form of complexity. Our study suggests that this

complexity could be related to the valuation complexity involved in aggregating multiple

payoff components of lotteries (Oprea, 2022). Another example is the mixed evidence

on the role of expectation-based reference points in the endowment effect (Ericson and

Fuster, 2011; Sprenger, 2015; Cerulli-Harms et al., 2019). Our finding that the role of loss

aversion depends on cognitive ability and experiences with complexity suggests that the

instability of expectation-based reference effects may be due to complexity, for example, in

contingent reasoning, in which expectations require simultaneous consideration of several

states and values (Martínez-Marquina et al., 2019; Esponda and Vespa, 2023). A further

example is the mixed effects of market experiences on exchange asymmetry, which is closely

related to the WTP-WTP gap. Several studies showed that exchange asymmetry can be

mitigated or eliminated by extensive market trading experience (List, 2003; Engelmann

and Hollard, 2010; List, 2011; Anagol et al., 2018), while Apicella et al. (2014) observed

that exchange asymmetry is present for hunter-gatherers with exposure to markets but not

for those living in isolated regions. The use of the buy-low and sell-high heuristic when

facing complexity found in our study suggests that this may be because some experience

with buying and selling is required to develop this heuristic, but extensive experiences may

reduce complexity and thus overcome its misuse. In a recent study, Fehr et al. (2022)

showed that exchange asymmetry is less pronounced among the poor than the rich, and

they attributed this observation to increased attention to decisions that involve higher

stakes. Increased attention may help reduce the complexity of the choice environment,

thus reducing the exchange asymmetry of the poor.

To sum up, our results shed new light on various explanations for the WTA-WTP gap.

Mechanism complexity can help explain the link between the WTA-WTP gap for the lot-
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teries and the sure payment, and valuation complexity provides a natural explanation for

the link between the WTA-WTP gap for lotteries and the ranges of possible prices. Our

results support the importance of both forms of complexity and show that the widely ob-

served WTA-WTP gap can be in part due to the use of heuristics in the face of complexity.

While loss aversion cannot account for these links, it is probably an important underlying

factor related to the WTA-WTP gap since loss aversion measured in a different study is

still able to account for a substantial portion of the WTA-WTP gap among those who

exhibited high performance on matrix reasoning questions.3 In this regard, our study sup-

ports the view that the widely observed WTA-WTP gap “results from many influences,” as

noted in a comprehensive review (Ericson and Fuster, 2014, p. 571), and these influences

differ substantially across subjects.

The paper proceeds as follows. Section 2 explains the experimental design. Section 3

reports the experimental results, and Section 4 concludes.

2 Experimental Design

Each subject was presented with two monetary lotteries and reported their WTA and WTP

for each lottery via price lists. We also measured the mechanism complexity of the price

list and the valuation complexity of each lottery. All monetary outcomes were denoted by

points in the experiment, with an exchange rate of 100 points = 0.50 euro. We explain

each of these tasks in detail below.

2.1 Eliciting within-subject WTA and WTP

We elicited, within-subject, the WTA and WTP for two monetary lotteries. The first

lottery (L1) offered 900 points or 100 points with equal probability. The second lottery

(L2) offered 975 points with 20% chance, 850 points with 30% chance, 150 points with 30%

chance, and 25 points with 20% chance.

Following Chapman et al. (2021), we elicited WTA and WTP with a price list with 20

rows (Holt and Laury, 2002). In each row, subjects chose between two options: a lottery

and a price. The lottery was fixed in the entire list, while the price changed monotonically

3Cerreia-Vioglio et al. (2022) showed that loss aversion itself may arise from complexity and caution.
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across rows. The prices were 0, 100, 200, 250, 300, 325, 350, 375, 400, 425, 450, 475,

500, 525, 550, 600, 700, 800, 900, and 1000 points. Note that the lottery dominated the

price of 0 points and was dominated by the price of 1000 points. Similar to Chapman

et al. (2021), we pre-selected the dominating option in these two rows. In the price list,

we asked subjects to select the row in which they would switch from one option to the

other. If a price list was randomly chosen for payment, subjects’ payoff was determined

by their choice in the randomly chosen row of the price list. To control for the effects of

presentation on the elicitation of WTA and WTP, we randomized the option that appeared

on the right or the left of the price list as well as the (increasing or decreasing) sequence

of prices at the individual level.

To elicit WTA, we informed subjects that they were endowed with the lottery. In each

row of the price list they chose between selling the lottery for a price or keeping the lottery.

To elicit WTP, we endowed subjects with 1000 points. In each row of the price list they

chose between buying the lottery for a price or keeping the 1000 points. We define WTA

and WTP as the midpoint of the prices in the two switching rows, and the WTA-WTP

gap is the difference between WTA and WTP. We randomized the eliciting order of WTA

and WTP and separated them by other tasks. Using the language of buying and selling

to elicit WTA and WTP is consistent with the literature (see, e.g., Isoni et al., 2011;

Chapman et al., 2021). To check whether the framing of the WTA and WTP questions

worked as expected, we also elicited the certainty equivalents of the two monetary lotteries

in a neutral frame from a separate sample.

2.2 Measuring mechanism complexity

To measure the mechanism complexity of the price list, we elicited subjects’ WTA and

WTP for a sure payment – receiving 500 points with 100% chance – with the same type

of price list as those for the two lotteries. The prices in the list for the sure payment were

450, 475, 499, 501, 525, and 550 points. We replaced the exact value of 500 points with

499 points and 501 points to avoid indifference between the price and the sure payment

of 500 points. Similar to the $2 card used by Cason and Plott (2014), our sure payment

has no payoff uncertainty and should thus induce a known preference. Should subjects

understand the price list correctly, they would switch between 499 and 501 on both WTA
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Question type The choice in each row
Option 1 Option 2

WTA Sell the lottery for y points. Keep the lottery.

WTP Buy the lottery for y points and Keep the 1000 points.
keep the remaining [1000-y] points.

Lotteries

L1 50%, 900 points; 50%, 100 points.

L2 20%, 975 points; 30%, 850 points; 30%, 150 points; 20% 25 points.

Prices y

Both 0, 100, 200, 250, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550,
lotteries 600, 700, 800, 900, 1000.

Table 1: Summary of the elicitation of WTA and WTP and the lotteries in the price list.
The options appearing on the left or the right of the price list as well as the (increasing or
decreasing) sequence of prices in the price list were randomized on the individual subject
level.

and WTP questions. This would result in WTAsure =WTPsure = 500, and a WTA-WTP

gap of zero. We interpret deviations of the WTA and WTP from 500 points as reflecting

mechanism complexity.

2.3 Measuring valuation complexity

To measure valuation complexity, we extended the binary choices in the standard price list

with a third option: the randomization option of receiving the lottery or the price according

to a computerized coin flip. For each lottery, subjects faced an extended price list with 20

rows, referred to as the R-range price list. In each row of the R-range price list, subjects

could choose the left option or the right option, which were either the lottery or the price

as in the standard price list, or the new middle option of randomization. Similar to the

elicitation of WTA and WTP, subjects needed to indicate the row of the R-range price list

in which they would switch from the left option to the middle option of randomization,

and the row in which they would switch from the middle option to the right option.

Subjects could make these two switches in the same row and not select the randomization

option at all. Figure 1 gives an example of the R-range price list. We measure valuation

complexity by the range of prices in which subjects chose the randomization option (the R-
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Price
0 Lottery Randomization Price
100 Lottery Randomization Price
200 Lottery Randomization Price
250 Lottery Randomization Price
300 Lottery Randomization Price
325 Lottery Randomization Price
350 Lottery Randomization Price
375 Lottery Randomization Price
400 Lottery Randomization Price
425 Lottery Randomization Price
450 Lottery Randomization Price
475 Lottery Randomization Price
500 Lottery Randomization Price
525 Lottery Randomization Price
550 Lottery Randomization Price
600 Lottery Randomization Price
700 Lottery Randomization Price
800 Lottery Randomization Price
900 Lottery Randomization Price
1000 Lottery Randomization Price

Choices

Figure 1: An example of the R-range price list. The lower bound of the R-range is 437.5
points, the upper bound is 512.5 points, and the size of the R-range is 512.5− 437.5 = 75
points.

range). As shown in Figure 1, the lower bound of the R-range is the midpoint of the prices

between which subjects switch from the lottery to the randomization option, and the upper

bound of the R-range is the midpoint of the prices between which subjects switch from

the randomization option to the price. The size of the R-range is the difference between

the two bounds. Whereas choosing the randomization option more than once could be

due to multiple reasons (Chew et al., 2022), our interpretation of the R-range as revealing

valuation complexity is consistent with the literature (Cettolin and Riedl, 2019; Agranov

and Ortoleva, 2023; Halevy et al., 2023), in which randomization is interpreted as evidence

of incomplete/imprecise preferences.

The R-range price list is more complicated than the standard price list, and subjects

may also perceive mechanism complexity. To control for the mechanism complexity of

the R-range price list, we also elicited the R-range for the sure payment of 500 points.
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As stipulated by stochastic dominance, subjects who correctly understood the elicitation

mechanism of the R-range price list never chose the randomization option in this price

list and would switch between 501 points and 499 points. Deviations from the above

choices imply mechanism complexity. We used the R-range of the sure payment to capture

mechanism complexity of the R-range elicitation mechanism.

2.4 Other measures

One potential source of mechanism and valuation complexity is limited cognitive ability.

Given the same elicitation mechanism and choice objects, subjects with low cognitive

ability are likely to be more prone to these two forms of complexity. To examine this

hypothesis, we included six matrix reasoning questions from the International Cognitive

Ability Resource (ICAR, Condon and Revelle, 2014) to assess subjects’ cognitive ability.

In these questions, subjects had to choose the image that best completed a 3 by 3 matrix

(see Appendix G for an example). We incentivized the elicitation of cognitive ability by

making subjects’ payment dependent on the number of correct answers they provided.

To better understand the forces underlying the R-range, we included a subset of ques-

tions from the desirability of control scale, which elicits how subjects perceive the impor-

tance or benefits of maintaining control (Burger and Cooper, 1979; Gebhardt and Bross-

chot, 2002). As Fudenberg et al. (2015) pointed out, a preference for randomization may

arise when the decision-maker makes a trade off between the probability of errors and the

cost of implementing the desired choice. In this sense, a decision-maker who prefers to

maintain control may perceive the implementation cost to be small and be less willing to

choose the randomization option. Appendix A.2 explains in more detail how desirability

of control may be related to valuation complexity. The scale consisted of statements like

“I enjoy making my own decisions” and “Others usually know what is best for me.” Sub-

jects reported on a 7-point Likert scale how strongly they agreed or disagreed with these

statements, ranging from completely disagree to completely agree. Appendix G provides

the complete list of statements.

The questions above also served to separate WTA questions, WTP questions, and R-

range questions.
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2.5 Sample and procedure

We conducted the experiment using the LISS (Longitudinal Internet studies for the Social

Sciences) panel administered by CentERdata (Tilburg University, The Netherlands) in

September 2021. The LISS panel is a representative sample of the Dutch population who

participate in online surveys monthly.4

We collected data from a total of 1856 subjects. Demographic information about the

subjects is reported in Table C.1 in Appendix C. For the main sample of 1236 subjects, we

used a within-subject design in which subjects reported their WTA, WTP, and R-range

for each lottery. To address the concern that subjects may be influenced by their earlier

responses, we separated the elicitation of WTA, WTP, and R-range by inserting other

questions. We also randomized the order in which subjects responded to the WTA, WTP,

and R-range questions. The order of the decisions was either: 1) WTA → matrix reasoning

→ WTP → desirability of control → R-range; 2) WTP → matrix reasoning → WTA →

desirability of control → R-range; 3) R-range → desirability of control → WTA → matrix

reasoning → WTP; or 4) R-range → desirability of control → WTP → matrix reasoning →

WTA. We further randomized the order of L1 and L2 in each task. For a separate sample

of 620 subjects, we replaced the WTA and WTP questions with price lists in a neutral

frame to elicit the certainty equivalents for the same two monetary lotteries.

After the online survey was completed, we randomly selected 10% of the subjects and

paid them an additional amount based on one of their decisions in the experiment (WTA

questions, WTP questions, R-range questions, or their performance on the six matrix

reasoning questions). If the decision selected for payment was the randomization option, a

random draw determined whether subjects would receive the lottery or the price. If they

received the lottery, a further random draw determined the payment of the lottery. On

average, the subjects who were selected for the additional payment received 2.97 euros on

top of the flat fee of 3 euro for completing the survey. The experiment was approved by

the Institutional Review Board of Radboud University.

4Households that could not otherwise participate were provided with a computer and Internet con-
nection. The longitudinal survey is fielded in the panel every year, covering a large variety of domains
including health, work, education, income, housing, time use, political views, values, and personality.

12



3 Experimental Results

In reporting the experimental results, we use Wilcoxon signed-rank tests for within-subject

statistical differences, Wilcoxon rank-sum tests for between-subject statistical differences,

and Obviously-Related Instrumental Variables (ORIV; Gillen et al., 2019) to estimate

correlations, unless stated otherwise.5

We find that on average subjects exhibited the standard WTA-WTP gap by reporting

a higher WTA than WTP. Figure 2 reports violin plots of the average WTA, WTP, and

WTA-WTP gap across the two lotteries. Across the two lotteries, the mean WTA is 523.47

and the mean WTP is 411.51, resulting in an average WTA-WTP gap of 111.96. The WTA-

WTP gap is about 22% of the expected value of the lotteries, which is comparable to the

finding reported by Chapman et al. (2021). In contrast, the mean certainty equivalent

from the neutral frame is 470.84, which differs significantly from the WTA and WTP of

the lotteries (p < 0.01). This suggests that the framing of the WTA and WTP questions

in the experiment worked in the expected direction. On the individual level, 58.41% of

subjects showed a positive WTA-WTP gap, 15.05% had a WTA-WTP gap of 0, and

a non-negligible proportion (26.54%) of subjects exhibited a negative WTA-WTP gap.

These values are broadly consistent with the proportions reported in previous studies. For

example, in Chapman et al. (2021) these values are 60%, 10%, and 30% respectively.

In the following analyses, we present our results in three steps. First, we report measures

of mechanism complexity and valuation complexity and examine their association with the

WTA and WTP of the lotteries. Second, we correct the WTA-WTP gap for mechanism

complexity and/or valuation complexity. Finally, we demonstrate the robustness of our

results by considering different demographic groups, the inclusion of loss aversion, and a

comparison across subsamples.

3.1 Mechanism complexity

We find that mechanism complexity, as measured by deviations of WTAsure and WTPsure

from 500, is systematic. Figure 3 presents the distribution of WTAsure, WTPsure, and the

WTA-WTP gapsure. We find that 64% of WTAsure deviations were positive and 36% were

5We use the WTA and WTP of two lotteries for ORIV estimation of correlations. The choice behavior
does not significantly differ between the two lotteries, as shown in the Appendix C.
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Figure 2: Violin plots of the average WTA, WTP, and WTA-WTP gap of the two lotteries.
The dots in the violins denote the means, the lines represent the standard deviations. The
dashed line is the average certainty equivalent of the lotteries from the neutral frame
(470.84 points). See Table C.2 in Appendix C for details on each lottery separately.

negative. In contrast, 58% of WTPsure deviations were negative and 42% were positive.

This leads to more positive WTA-WTP gaps for the sure payment than negative ones.

Three logistic regressions (reported in Table C.3 in Appendix C) suggest that the likelihood

of reporting WTAsure =WTPsure = 0 is significantly and positively related to subjects’

performance on the matrix reasoning questions, education, self-reported understanding of

the experimental tasks, and time spent on the tasks. These factors are commonly associated

with subjects’ ability or willingness to understand experimental tasks. Thus, deviations of

the sure payment’s WTA and WTP from 500 are likely to arise from subjects’ difficulty

with the complexity of the price list elicitation mechanism, which supports the use of these

deviations as a proxy for mechanism complexity.

Systematic bias of WTAsure and WTPsure can also be seen when we relate them to the

WTA and WTP of the two lotteries. There is a similar asymmetry in the proportions of

positive and negative WTA-WTP gaps between the sure payment (36.97% vs. 17.64%)

and the lotteries (58.41% vs. 26.54%). Figure 4 depicts violin plots of the average WTA

and WTP of the lotteries at each level of WTAsure and WTPsure, respectively. The data

pattern suggests a systematic association of WTA and WTP between the sure payment

and the lotteries and further shows that the WTA of the lotteries associates more strongly

with positive WTAsure deviations than negative ones, while the WTP of the lotteries
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gap for the sure payment. The white bars indicate the optimal WTA and WTP.
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Figure 4: Violin plots of the average WTA, WTP, and WTA-WTP gap of the two lotteries
at each level of the sure payment’s WTA, WTP, and WTA-WTP gap. The dots in the
violins denote the means, the lines represent the standard deviations.

associates more strongly with negative WTPsure deviations than positive ones. Consistent

with Figure 4, we find significantly positive correlations between WTAsure and the average

WTA of the lotteries (ρ = 0.599, p < 0.01), between WTPsure and the average WTP of

lotteries (ρ = 0.612, p < 0.01), and between the WTA-WTP gap of the sure payment and

the average WTA-WTP gap of the lotteries (ρ = 0.578, p < 0.01). Examining positive and

negative deviations separately, we find that positive WTA deviations and negative WTP

deviations, which are consistent with a positive WTA-WTP gap, correlate significantly with

the WTA and WTP of the lotteries (ρ = 0.107, p < 0.05 for WTA, and ρ = 0.228, p < 0.01

for WTP), while correlations between negative WTA deviations or positive WTP deviations
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and those of the lotteries are weaker (ρ = 0.123, p < 0.10 for WTA and ρ = −0.084,

p > 0.10 for WTP). These results suggest that positive WTAsure deviations and negative

WTPsure deviations are systematic biases, while negative WTAsure deviations and positive

WTPsure deviations are likely to arise from noise. We summarize our observation below.

Observation 1. The WTA and WTP of the sure payment deviate systematically from the

known preference, and these deviations correlate strongly with the WTA and WTP of the

lotteries.

3.2 Valuation complexity

As we explained in the experimental design, we capture valuation complexity by the range

of prices for which subjects chose the randomization option (the R-range). We find that the

majority of subjects chose the randomization option at least once for either of the lotteries

(67%), and many did so twice or more (56%). This results in a substantial R-range (mean

R-range of 103.96 across the two lotteries). Table C.4 in Appendix C provides more details

on the upper bound, lower bound, and R-range for each lottery.

The R-range also exhibits some systematic patterns. First, we hypothesized that sub-

jects who have a stronger desire for control are more willing to pick their desired option

than the randomization option. Consistent with the hypothesis, we find a significant neg-

ative correlation between subjects’ desirability of control and their average R-range across

the two lotteries (ρ = −0.103, p < 0.05). We also find a statistically significantly higher

level of desirability of control among subjects who do not have an R-range for either lot-

tery than among those who chose the randomization option at least once in one of the two

lotteries (5.28 vs. 5.16, p < 0.01).

Second, we find a positive and significant correlation between the R-range and the

WTA-WTP gap (ρ = 0.144, p < 0.01). When we restrict to subjects who randomized at

least once, we find an even stronger correlation (ρ = 0.264, p < 0.01). Consistent with the

correlation tests, we find that subjects who chose the randomization option more than twice

in the two lotteries have a significantly higher WTA-WTP gap than those who chose the

randomization option only once or twice (122.07 vs 79.61, p < 0.01). This trend can also be

seen in Figure 5. The picture for the group of subjects who never chose the randomization

option is less clear. They have no R-range, but their WTA-WTP gap is significantly larger
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Figure 5: Violin plots of the average WTA-WTP gap at different sizes of the R-range in
L1 and L2. Low and high R-range are computed by taking the median split of the R-range
(100 points) for subjects with an R-range larger than zero. The dots in the violins denote
the means, the vertical lines represent the standard deviations. For better readability, we
excluded the top and bottom 2.5% of the WTA-WTP gap (-332.03 and 763.28 points).

compared to those with low valuation complexity (122.04 vs. 78.85, p < 0.05) but similar

to those with high valuation uncertainty (122.04 vs. 137.88, p > 0.10. See Table C.4 in

Appendix C for more details). One possible explanation for this is that some subjects did

not understand the mechanism used to elicit the R-range. We will examine this point more

closely in subsection 3.3 and Appendix B. A further possibility is that the WTA-WTP gap

of the group with no R-range relates to factors other than complexity (e.g., loss aversion, to

which we return in Subsection 3.4). We offer the following observation regarding valuation

complexity.

Observation 2. The randomization option was chosen frequently. Among subjects who

selected the randomization option at least once, the R-range as a measure of valuation

complexity is significantly and positively correlated with the WTA-WTP gap.

To summarize, Table 2 provides the distribution of subjects with/out each form of

complexity and their associated average WTA-WTP gap, education, and performance on

the matrix reasoning questions. About 53% of subjects exhibited both forms of complexity,

and only 9% did not exhibit either form of complexity. Further, subjects with mechanism

complexity exhibited significantly higher WTA-WTP gaps than those without, and those

with high valuation complexity had higher WTA-WTP gaps than those with low valuation
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Mechanism complexity No mechanism complexity
Valuation complexity Valuation complexity

High Low No High Low No
Proportions 23.9% 28.6% 24.3% 6.9 % 7.4% 8.8%
WTA-WTP 158.99 91.74 133.23 71.47 31.05 91.23

gap (280.38) (221.95) (282.43) (176.85) (131.84) (153.88)

Education 3.86 3.73 3.73 4.34 4.22 4.81
(1.48) (1.47) (1.50) (1.29) (1.49) (1.27)

MR 3.28 3.02 2.87 4.20 4.22 4.72
performance (1.72) (1.80) (1.83) (1.54) (1.79) (1.46)

Table 2: The distribution of the subjects with/out each form of complexity, and their
associated average WTA-WTP gap, education, and performance in the matrix reasoning
questions. The high and low valuation complexity groups are defined by a median split
of the R-range (100 points for subjects with mechanism complexity, and 118.75 points for
those without). Education level is measured on a scale from 1 to 6. Standard deviations
are in parentheses.

complexity (p < 0.01 in both tests). Finally, subjects’ experience of complexity is related to

cognitive ability as measured by education and matrix reasoning performance: Compared

with subjects with both forms of complexity, subjects who did not exhibit either form of

complexity had more education and performed better on the matrix reasoning questions

(p < 0.01 in both tests).

3.3 Controlling for mechanism and valuation complexity

The analysis presented above suggests that the majority of subjects exhibited mechanism

complexity, which represents a systematic bias. Furthermore, this bias carries over to the

WTA and WTP of the lotteries. There is also substantial valuation complexity among

subjects, and this relates systematically to the WTA-WTP gap. Since these two forms of

complexity do not represent subjects’ preferences in the classical sense, we now examine

how much the observed WTA-WTP gap can be accounted for by mechanism complexity

and/or valuation complexity.

Correcting the WTA-WTP gap for mechanism complexity: We correct the WTA-

WTP gap for mechanism complexity in three ways: based on a theoretical analysis (Cason

and Plott, 2014), statistically for deviations (500−WTPsure and WTAsure−500), and sta-

tistically for deviations while allowing different slopes for positive and negative deviations.
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We first correct the WTA-WTP gap for mechanism complexity based on a theoretical

analysis that extends from Cason and Plott (2014). In this analysis, we assume that

subjects mistake the switching value in the price list for the final trading price, as in the

first-price auction (see Appendix A.1 for more details). Given the reported WTPX and

WTAX for the lottery X, X =L1 and L2, the theoretical analysis suggests that WTP ∗
X

and WTA∗
X , after correcting for mechanism complexity, are computed as follows:

WTP ∗
X =

100

WTPsure − 400
WTPX

WTA∗
X =

100

600−WTAsure
WTAX − WTAsure − 500

600−WTAsure
1000.

Note that there is no correction (WTP ∗
X = WTPX and WTA∗

X = WTAX) when WTPsure =

WTAsure = 500. After the correction, we observe a significantly lower WTA (497.86 vs.

523.47, p < 0.01), a higher, although not significantly, WTP (421.70 vs. 411.51, p > 0.10),

and both are moving closer to the CE of 470.84 from the neutral frame. As a result, the

WTA-WTP gap is significantly smaller, and it is reduced by one-third after the correction

(76.16 vs. 111.96, p < 0.01). The results for the two lotteries separately, presented in

Table C.5 in Appendix C, are virtually the same.

A limitation of the theoretical correction is that it assumes that mechanism complexity

affects WTA and WTP through the specific misperception of the first-price auction, and

that this misperception works to the same extent for L1 and L2. However, neither assump-

tion may hold in the experiment. To relax these assumptions, we proceed to correct WTA

and WTP statistically. In each statistical correction model, the dependent variable is the

WTA or WTP of the lottery. The independent variables are the mechanism complexity-

related variable(s) described above, denoted as MC. Explicitly, we first run the following

two OLS regressions for each lottery:

WTAX = Ia,X + βa,XMCa + ϵ; WTPX = Ip,X + βp,XMCp + ϵ, (1)

where I is the intercept, X =L1 or L2, or the average of the two lotteries, the vector

of coefficient(s) is denoted by β, and the subscript a or p denote WTA or WTP. These

regressions capture the idea that how subjects reported their WTA and WTP may have

been systematically affected by mechanism complexity, and the term βMC captures the
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component of the WTA or WTP that does not derive from classical preferences. Similar

regression forms have been extensively used in financial research to account for the influence

of various risk factors on excess asset returns (see e.g., Fama and French, 1992). With the

estimated β̂, we can correct the WTA and WTP for mechanism complexity as follows:

WTA∗
X = WTAX − β̂a,XMCa; WTP ∗

X = WTPX − β̂p,XMCp.

The variable(s) MC differs across the correction method. In the second correction, MCa =

(WTAsure − 500) and MCp = (500−WTPsure). Similar to the results of the theoretical

correction, after the statistical correction we observe a significantly lower WTA (497.95

vs. 523.47, p < 0.01), a significantly higher WTP (428.13 vs. 411.51, p < 0.05), and both

moving closer to the neutral frame. Consequently, the WTA-WTP gap is significantly

smaller, reduced by about 38% after the correction (69.82 vs. 111.96, p < 0.01).

In the third correction, we further allow for different slopes for positive and negative

deviations. As Figure 4 suggests, the WTA of the lotteries is more strongly associated

with positive WTA deviations of the sure payment than with negative ones, and the WTP

of the lotteries is more strongly associated with negative WTP deviations of the sure

payment than with positive ones. To account for this, we also include an interaction term

with deviations multiplied by a dummy variable that indicates negative deviations (Dneg).

According to statistical model 1, MCa = (WTAsure − 500,Dneg(WTAsure − 500)) and

MCp = (500−WTPsure, Dneg(500−WTPsure)). Consistent with the previous two

corrections, in the third correction we observe a significantly lower WTA (489.66 vs. 523.47,

p < 0.01), a significantly higher WTP (428.31 vs 411.51, p < 0.01), and a significantly

smaller WTA-WTP gap, which is about 55% of the original level (61.35 vs. 111.96, p <

0.01).

Figure 6 provides an overview of the three corrections. As we can see, after using each

correction method the WTA-WTP gap is reduced significantly, from about one-third to

45%. More details can be found in Table C.5 in Appendix C. In Appendix D, we perform

an additional correction, where we use dummy variables for each deviation of the sure

payment’s WTA or WTP from 500 to correct for the WTA, WTP, and WTA-WTP gap

of the lotteries. The results are broadly similar, with a 40% reduction of the lotteries’

WTA-WTP gap after the correction.
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Figure 6: The WTA, WTP, and WTA-WTP gap for the lotteries before and after each
of the three mechanism complexity correction methods. The dashed line is the average
certainty equivalent of the lotteries from the neutral frame (470.84 points).

Controlling the WTA-WTP gap for valuation complexity: To control the WTA-

WTP gap for valuation complexity, we follow the theoretical analysis in Appendix A.2 and

control the WTA and WTP of the lottery separately for the corresponding R-range with

the following regressions:

WTAX = Ia,X + βaR-rangeX + ϵ; WTPX = Ip,X + βpR-rangeX + ϵ,

where I is the intercept, X is L1, L2, or the average of the two lotteries. With the estimated

β̂i, i = a, p, the WTA∗ and WTP∗, after controlling for valuation complexity, are calculated

as follows:

WTA∗
X = WTAX − β̂aR-rangeX ; WTP ∗

X = WTPX − β̂pR-rangeX .

By controlling for valuation complexity, we observe a change in the WTA, WTP, and

WTA-WTP gap for the lotteries in the same direction as for the mechanism complexity

corrections, although with a smaller magnitude. The WTA is significantly lower (514.92

vs. 523.47, p < 0.01), and the WTP is significantly higher (419.62 vs. 411.51, p < 0.01).

Consequently, the WTA-WTP gap is reduced significantly by about 15% (95.30 vs. 111.96,
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Figure 7: The WTA, WTP, and WTA-WTP gap for the lotteries before and after control-
ling for (mechanism complexity corrected) valuation complexity. The dashed line represents
the average certainty equivalent of the lotteries in the neutral frame (470.84 points).

p < 0.01).

As discussed in section 2.3, there could be complexity with respect to the R-range price

list, which could distort our measure of valuation complexity. Therefore, we perform an

additional analysis by first correcting the upper bound and the lower bound of the R-range

for mechanism complexity, and then using the mechanism complexity corrected R-range

to control the WTA-WTP gap for valuation complexity. More details on these procedures

can be found in Appendix B. Controlling for the mechanism complexity corrected R-range

produces results comparable to those using the elicited R-range directly: The WTA de-

creases significantly (519.13 vs. 523.47, p < 0.01), and the WTP increases significantly

(420.44 vs. 411.51, p < 0.01), with the average WTA-WTP gap reduced significantly by

12% (98.69 vs. 111.96, p < 0.01). Figure 7 provides an overview of the WTA, WTP, and

WTA-WTP gap for the lotteries before and after controlling for (mechanism complexity

corrected) valuation complexity. More details can be found in Tables B.1 and C.6 in Ap-

pendix C. Overall, our results suggest that valuation complexity plays an important role

in the WTA-WTP gap.
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Considering two forms of complexity simultaneously: We now examine the WTA,

WTP, and resulting WTA-WTP gap for the lotteries accounting for mechanism complexity

and valuation complexity simultaneously. We conduct four analyses. In Models 1 and 3,

mechanism complexity is the deviation of the sure payment’s WTA or WTP from 500, and

in Models 2 and 4, mechanism complexity also allows for different slopes for positive and

negative deviations. In Models 1 and 2 valuation complexity is the elicited R-range, and in

Models 3 and 4 valuation complexity is the R-range corrected for mechanism complexity.
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Figure 8: The WTA, WTP, and WTA-WTP gap for the lotteries before and after control-
ling for both mechanism complexity and valuation complexity. In Model 1 and 3 mechanism
complexity is the deviation of the sure payment’s WTA or WTP from 500, and in Model 2
and 4 mechanism complexity additionally allows for different slopes for positive and neg-
ative deviations. In Model 1 and 2 valuation complexity is the elicited R-range, and in
Model 3 and 4 valuation complexity is the R-range corrected for mechanism complexity.
The dashed line represents the average certainty equivalent of the lotteries in the neutral
frame (470.84 points).

As we can see from Figure 8, the WTA-WTP gap decreases substantially in all four

models after accounting for both forms of complexity, ranging from 45% to 53%, with an

average residual WTA-WTP gap around 50% of the original level. More details can be

found in Table C.7 in Appendix C. These results suggest that classical preference-based

explanations of the WTA-WTP gap like loss aversion can not explain these results. For a

more comprehensive understanding of the WTA-WTP gap, it is important to consider the
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Figure 9: The WTA-WTP gap in various demographic groups. The solid lines are the
elicited WTA-WTP gap. The dashed lines are after controlling for mechanism complexity
and valuation complexity (Model 4 as defined in Figure 8). Error bars show the 95%
confidence intervals.

two forms of complexity. We summarize our observation in the following statement.

Observation 3. Accounting for mechanism complexity alone reduces the WTA-WTP gap

by about 40%. Controlling for valuation complexity alone leads to a 15% reduction in the

WTA-WTP gap. When considering both forms of complexity simultaneously, the WTA-

WTP gap decreases by over 50%.

3.4 Robustness checks

Demographic groups: One concern is that the significant impact of mechanism com-

plexity and valuation complexity on the WTA-WTP gap applies primarily to certain demo-

graphic groups, e.g., those with low education, and thus the insights cannot be generalized

to all groups. Our representative sample allows us to examine this concern. We consider

demographic groups based on gender (male, female), age (16-34, 35-49, 50-64, and 65

or above), education (based on the categorization of Statistics Netherlands, with low for

primary or pre-vocational education, medium for pre-university or vocational education,

and high for higher vocational or university education), and household monthly income

(< 2499, 2500− 3999, 2500− 3999, and 6000 or above). Table C.1 in Appendix C reports

the percentages of subjects in each demographic group. Figure 9 displays means and 95%

confidence intervals of the WTA-WTP gap in various demographic groups, both before
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and after controlling for mechanism complexity and valuation complexity. We make two

main observations. First, the WTA-WTP gap exhibits some heterogeneity but exists in all

demographic groups. Second, controlling the WTA-WTP gap for mechanism complexity

and valuation complexity has a significant and substantial effect in all demographic groups.

Loss aversion: The main purpose of our study is to demonstrate the role of mechanism

complexity and valuation complexity in the WTA-WTP gap. Since “[l]oss aversion has

been the leading theory ” for explaining the WTA-WTP gap (Ericson and Fuster, 2014, p.

571), as a further robustness check, we examine whether the above results hold when we

also include loss aversion as a control.

We use the loss aversion measure from an independent study based on the LISS panel

(Goossens and Knoef, 2022).6 A unified notion of loss aversion would predict a significant

and positive relationship between the WTA-WTP gap and loss aversion for risky bets in-

volving gains and losses. Our sample has an overlap of 533 subjects with the sample of

Goossens and Knoef (2022). The analyses below consider these subjects. The correlation

between the WTA-WTP gap and the loss aversion coefficient is positive and thus consistent

with the loss aversion explanation, but not significant (ρ = 0.067, p > 0.10).7 This result

is consistent with the findings of Chapman et al. (2021) and Fehr and Kübler (2022), who

found no significant correlation between loss aversion and the endowment effect in repre-

sentative samples from the United States and Germany, respectively. Remarkably, when

categorizing subjects into groups with/out each form of complexity as in Table 2, we find

a statistically significant correlation between loss aversion and the WTA-WTP gap in the

group who did not experience mechanism or valuation complexity (ρ = 0.507, p < 0.01),

while there are correlations of nearly zero and that are not significant in the other three

groups. Table C.8 further shows that the group that did not experience either form of

6In this measure, subjects faced a price list with five rows. In each row subjects faced two lotteries
A and B. The lottery A paid −X and +30 with equal likelihood. The lottery B paid −2 and +10 with
equal likelihood. Lottery B stayed the same across rows, while x in lottery A increased (-22,-16,-11,-8,-6).
Subjects were asked to indicate the row they would switch from A to B. The loss aversion coefficient is
calculated as λ = 30−10

−2−X
. For example, λ = 1 when X = −22.

7We also checked the correlation between the WTA/WTP ratio or its square root and loss aversion,
and the result is similar (ρ = 0.002, p > 0.10). Further, we do not find statistically significant correlations
between loss aversion and mechanism complexity or valuation complexity (ρ close to zero, p > 0.10 for all
tests).
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Figure 10: The WTA, WTP, and WTA-WTP gap for the lotteries in two subsamples based
on subjects’ performance on the matrix reasoning questions before and after controlling for
mechanism complexity and the corrected valuation complexity as well as loss aversion (λ)
in the overlapping subsample. The regression controlling for λ only considers loss aversion.
Model 4, as defined in Figure 8, controls for both forms of complexity. The dashed line
represents the average certainty equivalent of the lotteries in the neutral frame (470.84
points).

complexity had a substantial WTA-WTP gap (122.78), comparable to the gap in the over-

all sample. This corroborates our earlier speculation that the substantial WTA-WTP gap

in the group with no R-range could be partly due to loss aversion.

Cognitive ability: The experience of complexity depends on cognitive ability. As a fur-

ther analysis, we split the sample into two subsamples based on subjects’ performance

(above or below the median) on the matrix reasoning questions. We find that the cor-

relation between loss aversion and the WTA-WTP gap is significant for the high matrix

reasoning performance groups but not for the low performance group (ρ = 0.182, p < 0.01

vs. ρ = −0.038, p > 0.10).

We then performed the same analysis in Subsection 3.3 for each subsample separately.

Figure 10 illustrates the results. Accounting for the two forms of complexity significantly

reduces the WTA-WTP gap in both subsamples, with the impact of complexity being

greater in the subsample with low matrix reasoning performance: about 35% for those

who performed equal to or above the median vs. 83% for those below the median on the
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matrix reasoning questions. This suggests that complexity plays a more important role for

those with lower cognitive ability.

As a comparison, when we use loss aversion instead of the two forms of complexity to

account for the WTA-WTP gap, controlling for loss aversion alone reduces the gap by

53% (from 118.61 to 55.53) for subjects with high matrix reasoning performance, but it

even increases the gap by 11% among subjects with low matrix reasoning performance.

More details are presented in Table E.4, Table E.5, and other related tables in Appendix

E. These results suggest that not only is the WTA-WTP gap influenced by a variety

of factors but also that these factors differ substantially among different subjects.8 We

summarize the results of this subsection as follows:

Observation 4. The observed roles of mechanism and valuation complexity hold for dif-

ferent subgroups based on age, gender, education, and income. Complexity plays a more

important role in the subgroup with lower cognitive ability, and loss aversion plays a more

important role in the subgroup with higher cognitive ability.

4 Concluding Remarks

Using a large representative sample of the Dutch population, we show that mechanism and

valuation complexity contributed substantially to the WTA-WTP gap of the monetary

lotteries elicited using a price list mechanism. More specifically, we find that mechanism

complexity, as measured by deviations from a known preference, correlates significantly

with the WTA and WTP of monetary lotteries. Meanwhile, valuation complexity, as

measured by the R-range, relates systematically to the WTA-WTP gap of the monetary

lotteries. A series of quantitative analyses demonstrate that mechanism complexity alone

has the potential to account for about 40% of the observed WTA-WTP gap for the lotteries,

8A perhaps surprising finding in Figure 10 (also tables E.4 and E.5) is that, after accounting for the
two forms of complexity, the group with low matrix reasoning performance exhibited a lower WTA-WTP
gap in comparison to the group with high matrix reasoning performance. However, this reduction should
not be misinterpreted as evidence that these subjects would have naturally displayed a lower WTA-WTP
gap in the absence of these two forms of complexity. If these subjects had a complete understanding
of the elicitation mechanism and the valuation of the lotteries, they might have been able to make more
informed decisions to reveal their loss aversion-driven WTA-WTP gap like those with high matrix reasoning
performance. Chew et al. (2018) measured subjects’ comprehension of the experiment and showed that
high-comprehension subjects exhibited ambiguity aversion while low-comprehension subjects appeared to
be ambiguity neutral by choosing randomly.
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valuation complexity alone for about 15%, and the two forms of complexity together for

about 50%.

Our observations can be accommodated by linking complexity and heuristics. Complex-

ity naturally arises in studies that involve experiments or surveys. When decision-makers

face complexity, they often rely on heuristics to make decisions (Simon, 1955; Kahneman

and Tversky, 1974; Gigerenzer et al., 1999; Ortoleva, 2010; Iyengar and Kamenica, 2010).

Moreover, most heuristics tend to bias decisions systematically in certain directions.9 In

our experiment, the buy-low and sell-high heuristic could reduce the WTP and increase

the WTA, and thus result in the WTA-WTP gap of the lotteries and the sure payment. In

addition, recent studies have increasingly recognized that subjects may find choice objects

difficult to value, and the complexity of valuing choice objects may be responsible for some

behavioral biases that were previously thought to reflect underlying preferences (Oprea,

2022; Enke et al., 2023). When subjects are uncertain about the precise valuation of a

choice object and have to decide, they may act cautiously, which can also be viewed as

a heuristic (as with bad-deal aversion; e.g., Weaver and Frederick, 2012). Cerreia-Vioglio

et al. (2022) demonstrated that valuation uncertainty and caution together can explain

the endowment effect, loss aversion, and the certainty effect. Consistent with this idea, a

part of the WTA-WTP gap in our setting arises because valuation uncertainty and caution

reduce the WTP and increase the WTA, as demonstrated by the link between the R-range

and the WTA-WTP gap.

Although the framework that links complexity and heuristics has gained increasing

attention in the behavioral literature, it faces several significant challenges that are also

present in the current study. First, there is no well-established approach to reveal and quan-

tify the complexity that subjects perceive. Consistent with the method in Cettolin and

Riedl (2019), Agranov and Ortoleva (2023), and Halevy et al. (2023), this study employed

randomization to measure valuation complexity. However, there are alternative methods.

For example, some studies have focused on subjects’ decision confidence (Dubourg et al.,

9For example, the heuristic of choosing in the middle could bias choices in the price list at the center
of the list (Bosch-Domènech and Silvestre, 2013). The heuristic of maintaining the status quo unless
offered a strictly better alternative could generate the endowment effect and the default bias (Masatlioglu
and Ok, 2005; Sautua, 2017). The heuristic of anchor-and-adjustment could induce insufficient responses
to information, resulting in anchoring effects and the over/underreaction of prices in financial markets
(Hogarth and Einhorn, 1992).
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1994; Butler and Loomes, 2007; Cubitt et al., 2015; Enke and Graeber, 2021) or cogni-

tive uncertainty (Enke and Graeber, 2023). Others measure valuation complexity with

respect to lotteries and temporal payments based on subjects’ calculation errors in alge-

braic choices, which serve as no-risk-no-time mirrors of risky or temporal choices (Oprea,

2022; Enke et al., 2023). These elicitation methods reflect different conceptualizations of

complexity, such as incomplete preferences, preference imprecision, preference uncertainty,

cognitive noise, and cognitive uncertainty. While there is evidence that different measures

of valuation complexity are significantly correlated with each other and thus may have sim-

ilar behavioral contents (Arts et al., 2020), it is desirable to have a unified framework to

precisely delineate the conceptual disparities and behavioral consequences of these distinct

methods (Gabaix and Graeber, 2023).

It can also be difficult to measure mechanism complexity. A popular approach for

eliciting mechanism complexity, which we adopted here, is to use objects with known pref-

erences and measure complexity with deviations from these known preferences (Cason and

Plott, 2014). However, the objects with known preferences differ from actual choice ob-

jects. This implies that we do not directly measure mechanism complexity for the actual

choice objects. This difference is important when mechanism complexity could interact

with valuation complexity, e.g., mechanism complexity may be more severe when objects

are more complex in our setting. The potential interaction between the two forms of com-

plexity can also complicate the elicitation of valuation complexity, as it takes place in an

elicitation mechanism. In our investigation, we find that our subjects faced substantial

mechanism complexity when we elicited their R-ranges, although it appears that mech-

anism complexity did not systematically bias the impact of R-range on the WTA-WTP

gap. Further, there is evidence that our mechanism for eliciting valuation complexity un-

derestimates it, likely because a large group of subjects found the elicitation mechanism

too complex and opted for simplistic choice rules. Research in this area has been rare, and

future investigation is needed.

Second, it is difficult to identify the heuristics subjects use when facing complexity.

There are many heuristics, and their application may depend on the decision situation and

individual characteristics. Price list elicitation can result in several heuristics including the

central tendency (Bosch-Domènech and Silvestre, 2013), relying on a randomly generated
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anchor (Ariely et al., 2003), emphasizing the first choice in the choice list (Hermann and

Musshoff, 2016), the buy-low and sell-high heuristic (Kahneman et al., 1982), or caution

in the face of valuation complexity (Cerreia-Vioglio et al., 2022). We controlled for the

central tendency and anchoring heuristics by using the same ranges of sure payments on

the WTA and WTP questions and randomizing the order (ascending or descending) of the

sure payments in the price list. Additionally, the WTA-WTP gap of the sure payment

is consistent with the buy-low and sell-high heuristic but not with caution. While these

results suggest that the buy-low and sell-high heuristic may be one important driving force

behind the WTA-WTP gap of the lotteries, we leave it for future studies to understand

the effects of multiple heuristics on the elicitation of WTA and WTP.

A further challenge relates to separating heuristics from noisy responses. For example,

while the tendency to switch in the middle of the choice lists and to choose the middle

of the budget lines is in line with heuristic rules, it can also be viewed as noisy responses

(Choi et al., 2006; Enke and Graeber, 2023; Halevy and Mayraz, 2022). In our experiment,

we find that many subjects had a negative WTA-WTP gap for the sure payment. Further

analysis indicates that these negative WTA-WTP gaps may result from noisy responses.

However, without additional information, we are unable to conclusively differentiate noisy

responses from heuristics. Consequently, our control of complexity on preference inference

is likely to be too conservative.

Our study adds to the emerging literature on the effect of complexity on choice behavior

and points to the need to separate preferences from heuristics and noise. Earlier works in

behavioral economics have provided substantial insights into the identification of heuristics

in various situations (Simon, 1955; Kahneman and Tversky, 1974). Recent studies have

provided more concrete evidence and formal analysis with respect to differentiating prefer-

ences from noise and biases (Cerreia-Vioglio et al., 2022; Oprea, 2022; Enke and Graeber,

2023; Enke et al., 2023). These studies shed light on the importance of unraveling com-

plexity as a fundamental aspect of decision-making processes and call for more research

to provide comprehensive answers to these challenges and deepen our understanding of

complexity and decision-making.
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Appendices

A Appendix: Theoretical analysis of mechanism complexity
and the R-range

As explained in the experimental design, we elicited a measure of mechanism complexity

and valuation complexity for each subject. Below we provide an illustration of how these

two factors relate to the WTA-WTP gap and how to control the WTA-WTP gap for these

two measures.

A.1 Correcting theoretically the WTA-WTP gap for mechanism com-
plexity

For analytical convenience, we assume a linear utility function. The decision maker per-

ceives it as a loss when giving up the lottery and as a gain when receiving the lottery.

It can then be shown that WTP = EVX/λ and WTA = λEVX , where EVX denote the

expected value of the lottery and λ the loss aversion coefficient. In line with Cason and

Plott (2014), we assume the decision maker is subject to mechanism complexity of the

first price auction when reporting WTA and WTP. Let 0 ≤ αi ≤ 1 denote the degree of

mechanism complexity, with a small α indicating a weaker mechanism complexity, and i=a

for WTA and p for WTP. Let p denote a price, p and p̄ the minimum and the maximum

prices in the price list. The expected payoff (π) of stating WTP or WTA in the price list

is, respectively:

E(πWTP ) =
1

p̄− p

∫ WTP

p
[EVX − λαpWTP − (1− αp)λp] dp

=
1

p̄− p

{
(WTP − p) [EVX − λαpWTP ]− (1− αp)λ(1/2WTP 2 − 1/2p2))

}
E(πWTA) =

1

p̄− p

∫ p̄

WTA
[(αaWTA+ (1− αa)p− λEVX ] dp

=
1

p̄− p

{
(p̄−WTA) [αaWTA− λEVX ]− (1− αa)(p̄

2/2−WTA2/2)
}
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The optimal WTA and WTP that the decision maker reports are then:

WTP =
1

(1 + αp)
EVX/λ+

αp

(1 + αp)
p

WTA =
1

1 + αa
λEVX +

αa

1 + αa
p̄

When X is a sure payment, the decision maker exchanges between sure payments and there

should be no loss aversion. Thus, if the decision maker correctly understands the incentives

in the price list, she should report WTA=WTP=500 for the sure payment. Deviating from

500 implies mechanism complexity. We can infer the decision maker’s degree of mechanism

complexity about the price list (αi) from the reported WTAsure and WTPsure for the sure

payment as:

αp =
500−WTPsure

WTPsure − 400

αa =
WTAsure − 500

600−WTAsure
,

where 400 is p and 600 p̄ of the sure payment. Correcting for mechanism complexity, the

preference-based WTP ∗ and WTA∗ for the lottery are respectively:

WTP ∗ = EVX/λ = WTP + αp(WTP − p)

WTA∗ = λEVX = WTA− αa(p̄−WTA),

where p = 0 and p̄ = 1000 for the two lotteries in our experiment. Inserting these val-

ues in the above equations, the underlying WTP ∗ and WTA∗ corrected for mechanism

complexity are:

WTP ∗ =
100

WTPsure − 400
WTP

WTA∗ =
100

600−WTAsure
WTA− WTAsure − 500

600−WTAsure
1000.

Note that WTP ∗ = WTP and WTA∗ = WTA when WTPsure = 500 and WTAsure =

500.

A.2 What the R-range reveals

There are a number of ways to relate the R-range to valuation complexity. For example,

the literature of incomplete preferences assumes that decision makers may have incomplete

preferences over some choices, and they choose to randomize between the options when
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indecisive (Bewley, 2002; Eliaz and Ok, 2006; Cettolin and Riedl, 2019; Halevy et al.,

2023). Below we discuss how the R-range captures valuation complexity in the framework

of Fudenberg et al. (2015). We then motivate our statistical analysis about how to control

the WTA-WTP gap for valuation complexity.

When facing a lottery X and a price y, a decision maker behaving according to Fuden-

berg et al.’s (2015) functional form chooses the optimal randomization probability as

p∗ = argmaxp pU(X) + (1− p)U(y)− c(p)− c(1− p),

where U(·) is the Von Neumann–Morgenstern expected utility, u(·) is the Bernoulli utility,

and c(p) is a convex and continuously differentiable cost function. Fudenberg et al. (2015)

show that their representation corresponds to a form of an uncertainty averse decision

maker who is unsure about her true utility and uses randomization to hedge her preference

uncertainty. When the decision maker faces the lottery X, a price y, and a randomization

option where the decision maker receives either option with probability 0.5, she may strictly

prefer the randomization option over X or y. To see this, notice that the first order

condition of the above equation is simply c′(p)− c′(1− p) = U(X)− u(y), which predicts

that the optimal p is close to 0.5 when U(X)− U(y) is small.

We can infer the level of valuation complexity that the decision maker perceives over

the choice problem between X and y from the range of prices y that the decision maker

chooses the randomization option. Define the smallest (y) and largest (ȳ) prices of y that

such that the decision maker prefers the randomization option as

u(y) + 0.5[U(X)− u(y)]− 2c(0.5) ≥ U(X)− c(1.0)− c(0)

⇒ u(y) = U(X)− 2[c(1.0) + c(0)− 2c(0.5)],

u(ȳ) + 0.5[U(X)− u(ȳ)]− 2c(0.5) ≥ u(ȳ)− c(1.0)− c(0),

⇒ u(ȳ) = U(X) + 2[c(1.0) + c(0)− 2c(0.5)].

The term 2[c(1.0) + c(0) − 2c(0.5)] = c(1.0)−c(0.5)
1−0.5 − [c(0.5)−c(0)]

0.5−0 measures the convexity

of the cost function, which, according to Fudenberg et al. (2015), is positively related

to valuation complexity. This is most clear when the cost function takes the form of

c(p) = plog(p)/η. Simple calculation shows that the optimal randomization probability

is the familiar logit/logistic choice rule: p∗ = eηU(X)

eηU(X)+eηu(y)
. As shown by Holman and
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Marley, the parameter 1/η can be linked to the variance of the i.i.d. Gumbel preference

shocks in a random utility representation (Luce and Suppes, 1965, p.338), with a larger η

corresponding to a smaller valuation complexity. In light of Fudenberg et al. (2015), the

cost function may also relate to a measure of control desirability because, as Fudenberg

et al. (2015) point out, a preference for randomization arises because the decision maker

trades off the probability of errors against the cost of making the desired choice. A decision

maker who prefers to maintain controls may perceive the implementation cost to be small

and is less willing to randomize.

Let ∆ = 2[c(1.0)+c(0)−2c(0.5)]. It follows that we can estimate a measure of valuation

complexity ∆ from the R-range as ∆ =
u(ȳ)−u(y)

2 . Note that the “true” valuation of the

lottery is U(X) = [u(ȳ)+u(y)]/2. When the decision maker perceives valuation complexity

about the lottery and is asked for WTP and WTA, she behaves cautiously and understates

her WTP and overstates her WTA, respectively (Cerreia-Vioglio et al., 2022), resulting a

positive WTA-WTP gap. This could arise even when the decision maker is not loss averse.

One way to capture the above mechanism is:

u(WTP ) = U(X)− δp∆

u(WTA) = U(X) + δa∆,

where δi, i = a, b denotes the decision maker’s cautious attitude toward valuation com-

plexity when stating WTP and WTA. This motivates the following analysis in the main

text:

WTAX = I + β1R-rangeX + ϵ

WTPX = I + β2R-rangeX + ϵ,

where I is the intercept, X is L1, L2, or the average of the two lotteries.
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B Appendix: Correcting the R-range for mechanism com-
plexity
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Figure B.1: Distribution of the upper bound and lower bound of the sure payment. The
left panel shows the distribution of the bounds for subjects who do not randomize for the
sure payment. The right two panels show the distribution of the bounds for subjects who
randomize at least once for the sure payment. The white bars show the optimal response
of 500 points for the upper and lower bound.

To correct the R-range for mechanism complexity, we use subjects’ two bounds of the

R-range for the sure payment. The optimal upper bound and lower bound for the sure pay-

ment are both 500, and subjects should never choose the randomization option. Deviating

from these optimal responses implies mistakes or biases. When subjects never chose the

randomization option but had non-optimal bounds for the sure payment, it is unclear how

these non-optimal responses affect the R-range systematically. The left histogram in Figure

B.1 suggests that these non-optimal responses have no systematic pattern. We, therefore,

make no correction of the R-range for these deviations from the optimal response. On the

other hand, when subjects chose the randomization option at least once and thus have

an R-range for the sure payment, this could represent a systematic bias and may increase

the R-range for the lotteries if subjects would exhibit the same tendency in the R-range

task for the lotteries. Indeed, the right two histograms in Figure B.1 suggest that these

non-optimal responses are systematically biased: The upper bound is systematically biased

upward and the lower bound is systematically biased downward.

We correct the R-range for mechanism complexity by using deviations from the optimal
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Lottery Before Correcting for
correction deviations

L1 551.62 527.69∗∗
(233.61) (226.85)

Upper L2 538.55 513.96∗∗
Bound (229.99) (223.89)

Average 545.09 519.83∗∗
(209.22) (202.08)

L1 449.14 467.84∗∗∗
(239.10) (233.02)

Lower L2 433.10 451.94∗∗∗
Bound (237.23) (230.98)

Average 441.12 459.89∗∗∗
(213.65) (206.76)

R-range

L1 102.48 57.85∗∗∗
(172.42) (160.64)

L2 105.45 62.02∗∗∗
(174.91) (160.66)

Average 103.96 59.94∗∗∗
(149.59) (134.24)

Table B.1: The upper bound, the lower bound, and the R-range before and after correction
for mechanism complexity. We only correct the upper bound and lower bound for subjects
who chose the randomization option at least once for the sure payment. For subjects
who did not choose the randomization option the uncorrected upper and lower bound is
included in the computation of the mean and standard deviation after correction. Wilcoxon
signed-rank tests were performed to test the significance of the difference between the upper
bound, the lower bound, and the R-range before and after the correction for mechanism
complexity, * p < 0.10, ** p < 0.05, *** p < 0.01.

responses. In these statistical correction regressions, we exclude subjects who never chose

the randomization option but reported non-optimal bounds for the sure payment. As

discussed above, their non-optimal responses do not systematically bias the R-range, and

it is unclear how to correct these R-ranges. We use their uncorrected R-range in further

analysis.

Table B.1 reports the corrected bounds and R-range of the two lotteries separately and

the averages. We see that mechanism complexity correction significantly lowers the upper

bound (average of the two lotteries: 519.83 vs 545.09, p < 0.05) and increases the lower

bound (average of the two lotteries: 459.89 vs 441.12, p < 0.01). This leads to significantly

smaller R-ranges (average of the two lotteries: 59.94 vs 103.96, p < 0.01).

44



C Appendix: Additional tables

WTA-WTP sample Neutral frame sample
Sample size 1236 620

Female 47.17 48.06
Age

16-34 10.76 11.13
35-49 19.74 15.97
50-64 33.25 24.52
65 and above 36.25 48.39

Education level
Low 24.19 24.35
Medium 33.82 29.35
High 41.75 46.13

Household income
0-2499 22.25 21.29
2500-3999 24.68 26.45
4000-5999 22.57 24.68
6000 and above 25.16 24.52

Occupation
Paid work 50.97 42.26
House work 7.36 7.58
Retired 30.26 40.97
Others 11.41 9.19

Household composition
Partner 66.91 63.06
# of children 0.49 0.37

Table C.1: Sample composition of the LISS panel members who participated in the ex-
periment. The numbers represent the percentage of subjects in each demographic group,
except for the number of children, which is the average. Column 1 shows subjects from
the within-subject design in which they reported their WTA, WTP, and R-range. Column
2 shows the subject who completed the neutrally framed questions.
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L1 L2 Average Sure payment

WTA 527.54 519.40 523.47 505.08
(243.92) (247.26) (226.40) (20.48)

WTP 415.32 407.70 411.51 496.63
(252.29) (253.78) (234.84) (22.66)

The WTA-WTP gap 112.22∗∗∗ 111.70∗∗∗ 111.96∗∗∗ 8.45∗∗∗

(275.34) (275.10) (242.99) (27.07)

CE neutral 476.55 465.12 470.84
(215.96) (214.47) (199.35)

Table C.2: Means of WTA, WTP, WTA-WTP gaps, and CE in the neutral frame for L1,
L2 and the average across the two lotteries, as well as the means of WTA, WTP, and
WTA-WTP gap of the sure payment. Wilcoxon signed-rank tests were performed to test
the significance of the WTA-WTP gap. * p < 0.10, ** p < 0.05, *** p < 0.01.

Dependent variable WTAsure = 500 WTPsure = 500
WTA-WTP
gapsure = 0

Independent variables Log odds
Matrix reasoning 0.26∗∗∗ 0.26∗∗∗ 0.10∗∗∗

score (0.04) (0.04) (0.03)

Education 0.24∗∗∗ 0.14∗∗∗ 0.03
(0.04) (0.05) (0.04)

Self-reported 0.20∗∗∗ 0.21∗∗∗ 0.16∗∗∗

understanding (0.05) (0.05) (0.04)

Response time 0.04∗∗ 0.04∗∗ −0.02∗

(0.02) (0.02) (0.01)

Intercept −2.97∗∗∗ −2.92∗∗∗ −1.01∗∗∗

(0.26) (0.27) (0.23)
Efron’s R2 0.12 0.10 0.02

Table C.3: Logistic regressions with the optimal response as the dummy dependent variable
(1 indicates the optimal response: WTAsure = 500, WTPsure = 500, and WTA-WTP
gapsure = 0). The independent variables include subjects’ IQ (their score on the matrix
reasoning questions), education level (categorical, from 1 to 6), self-reported understanding
of the experimental questions (likert scale from 1 to 5), and time spent on the corresponding
task (time on the WTA questions, time on the WTP questions, and total time on both the
WTA and WTP questions for the sure payment). * p < 0.10, ** p < 0.05, *** p < 0.01.
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Lottery Upper Lower R-rangebound bound

L1 551.62 449.14 102.48
(233.61 (239.10) (172.42)

L2 538.55 433.10 105.45
(229.99) (237.23) (174.91)

Average 545.09 441.12 103.96
(209.22) (213.65 (149.59)

Lottery Randomizing frequency:
0 1 2 or more

L1 121.05 67.00 127.19
(295.71) (237.75) (265.57)

L2 118.13 83.65 121.76
(280.48) (247.70) (284.37)

Randomizing frequency:
0 1 or 2 3 or more

Total in 122.04 79.61 122.07
L1 and L2 (255.09) (226.17) (241.32)

Table C.4: The left panel reports the mean upper bounds, lower bound, and the R-range for
L1, L2, and the averages across lotteries. The right panel reports the mean WTA-WTP gap
for subjects who chose the randomization option 0 times, 1 time, and 2 times or more for
each of the corresponding lottery (and 0, 1 or 2, and 3 times or more, respectively, for the
total times randomizing in L1 and L2). Standard deviations are presented in parentheses.

Lottery
Correcting

Before theoretically for deviations for deviations
correction different slopes

WTA

L1 527.54 504.70∗∗∗ 500.09∗∗∗ 488.82∗∗∗

(243.92) (257.55) (217.37) (217.02)

L2 519.40 491.02∗∗∗ 495.82 490.50∗∗∗

(247.26) (274.85) (228.26) (228.18)

Average 523.47 497.86∗∗∗ 497.95∗∗∗ 489.66∗∗∗

(226.40) (240.35) (201.69) (201.49)

WTP

L1 415.32 425.50 431.97∗∗ 438.02∗∗∗

(252.29) (259.21) (226.07) (226.00)

L2 407.70 417.90 424.30∗∗ 418.60∗∗

(253.78) (264.37) (227.86) (227.80)

Average 411.51 421.70 428.13∗∗ 428.31∗∗∗

(234.84) (238.00) (206.49) (206.49)

L1 112.22 79.20∗∗∗ 68.12∗∗∗ 50.81∗∗∗

(275.34) (312.22) (264.27) (264.18)
WTA-WTP L2 111.70 73.12∗∗∗ 71.52∗∗∗ 71.90∗∗∗

gap (275.10) (324.00) (264.77) (265.03)

Average 111.96 76.16∗∗∗ 69.82∗∗∗ 61.35∗∗∗

(242.99) (279.24) (230.79) (231.06)

Table C.5: WTA, WTP, and WTA-WTP gap before and after each of the three correc-
tion methods. Wilcoxon signed-rank tests were performed to test the significance of the
difference between the WTA, WTP, and WTA-WTP gap before and after the correction,
* p < 0.10, ** p < 0.05, *** p < 0.01.
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Lottery Before After controlling for the
controlling R-range corrected R-range

WTA

L1 527.54 519.84∗∗∗ 523.27∗∗∗

(243.92) (243.58) (243.63)

L2 519.40 514.30∗∗∗ 517.64∗∗∗

(247.26) (247.11) (247.21)

Average 523.47 514.92∗∗∗ 519.13∗∗∗

(226.40) (226.07) (226.20)

WTP

L1 415.32 421.55∗∗∗ 421.84∗∗∗

(252.29) (252.07) (251.64)

L2 407.70 413.37∗∗∗ 413.54∗∗∗

(253.78) (253.60) (253.33)

Average 411.51 419.62∗∗∗ 420.44∗∗∗

(234.84) (234.55) (233.99)

L1 112.22 98.29∗∗∗ 101.43∗∗∗

The (275.34) (274.34) (273.71)
WTA-WTP L2 111.70 100.93∗∗∗ 104.10∗∗∗

gap (275.10) (274.52) (274.40)

Average 111.96 95.30∗∗∗ 98.69∗∗∗

(242.99) (241.81) (241.17)

Table C.6: WTA, WTP, and WTA-WTP gap before and after controlling for the (MC corrected)
R-range. Wilcoxon signed-rank tests were performed to test the significance of the difference
between the WTA, WTP, and WTA-WTP gap before and after controlling for the (MC corrected)
R-range, * p < 0.10, ** p < 0.05, *** p < 0.01.
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Lottery Before After controlling for both mechanism complexity and the R-range
controlling Model 1 Model 2 Model 3 Model 4

WTA

L1 527.54 496.95∗∗∗ 486.45∗∗∗ 497.57∗∗∗ 486.62∗∗∗

(243.92) (217.30) (216.97) (217.25) (216.92)

L2 519.40 491.81∗∗∗ 486.69∗∗∗ 493.75∗∗∗ 488.30∗∗∗

(247.26) (228.16) (228.09) (228.19) (228.12)

Average 523.47 493.06∗∗∗ 485.40∗∗∗ 494.58∗∗∗ 486.37∗∗∗

(226.40) (201.56) (201.38) (201.55) (201.35)

WTP

L1 415.32 437.00∗∗∗ 442.88∗∗∗ 436.89∗∗∗ 443.26∗∗∗

(252.29) (225.91) (225.84) (225.64) (225.57)

L2 407.70 425.90∗∗∗ 420.21∗∗∗ 426.52∗∗∗ 420.73∗∗∗

(253.78) (227.85) (227.78) (227.79) (227.72)

Average 411.51 432.68∗∗∗ 432.60∗∗∗ 433.37∗∗∗ 433.52∗∗∗

(234.84) (206.39) (206.39) (206.14) (206.14)

L1 112.22 59.95∗∗∗ 43.57∗∗∗ 60.68∗∗∗ 43.36∗∗∗

(275.34) (263.83) (263.79) (263.33) (263.24)
WTA-WTP L2 111.70 62.90∗∗∗ 66.48∗∗∗ 67.23∗∗∗ 67.57∗∗∗

gap (275.10) (264.57) (264.83) (264.49) (264.74)

Average 111.96 60.38∗∗∗ 52.80∗∗∗ 61.22∗∗∗ 52.84∗∗∗

(242.99) (230.29) (230.59) (229.84) (230.11)

Table C.7: WTA, WTP, and WTA-WTP gap before and after controlling for both mech-
anism complexity and the R-range. In Model 1 and 3 mechanism complexity is deviations
from the optimal response, while in Model 2 and 4 mechanism complexity is deviations
from the optimal response while allowing for different slopes for positive and negative de-
viations. In Model 1 and 2 the R-range is uncorrected, and in Model 3 and 4 the R-range
is mechanism complexity corrected. Wilcoxon signed-rank tests were performed to test
the significance of the difference between WTA, WTP, and WTA-WTP gap before the
correction and after the correction, * p < 0.10, ** p < 0.05, *** p < 0.01.
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Mechanism complexity No mechanism complexity
Valuation complexity Valuation complexity

High Low No High Low No
Proportions 23.8% 29.5% 22.5% 7.7 % 8.1% 8.4%
WTA-WTP 151.62 103.54 95.78 76.22 0.58 122.78

gap (285.83) (234.38) (267.05) (170.66) (128.25) (195.53)

Education 3.84 3.58 3.74 4.27 4.16 4.71
(1.40) (1.45) (1.36) (1.25) (1.51) (1.16)

MR 3.78 3.22 3.23 4.39 4.33 4.76
performance (1.49) (1.73) (1.78) (1.39) (1.64) (1.26)

Correlation between λ 0.155 0.083 −0.044 −0.068 −0.146 0.507∗∗∗

and the WTA-WTP gap

Table C.8: The distribution of the subjects with/out each form of complexity, their associ-
ated average WTA-WTP gap, education, performance in the matrix reasoning questions,
and loss aversion (λ), and the correlation between the WTA-WTP gap and λ. The high
and low valuation complexity groups are defined by a median split of the R-range (100
points for subjects with mechanism complexity, and 131.25 points for those without). Ed-
ucation level is measured on a scale from 1 to 6. Standard deviations are in parentheses.
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D Appendix: Mechanism complexity and valuation complex-
ity correction with dummy variables for each deviation

In subsection 3.3 we describe three mechanism complexity correction methods. Here,

we discuss one additional method based on the same statistical correction model 1. For

this correction, we use dummy variables for each deviation of the sure payment’s WTA

or WTP from 500 to correct for the WTA, WTP, and WTA-WTP gap of the lotteries.

Specifically, in statistical model 1, MCa = [537.5, 513, 487, 462.5]T denotes a vector of

dummy variables for each possible value of the WTAsure other than the correct response

of 500 points, and MCp = [537.5, 513, 487, 462.5]T denotes a vector of dummy variables

for each possible value of the WTPsure other than the correct response of 500 points. This

correction relaxes the assumption that a higher deviation from 500 for the sure payment

corresponds to a higher mechanism complexity. In Table D.1 we present the results of the

correction for mechanism complexity only and the joint correction of mechanism complexity

and valuation complexity. When controlling for valuation complexity we look at both the

uncorrected R-range and the R-range corrected for mechanism complexity. In the latter

case, we correct the R-range using dummy variables for each deviation as described above.

Consistent with the corrections reported in the main paper, we observe a significantly

smaller WTA-WTP gap after correcting for mechanism complexity with dummy variables

for each deviation (64.72 vs 111.96, p < 0.01). This is a reduction of about 40%, comparable

to the two statistical correction methods we reported in the main text. Also consistent with

these earlier corrections, we see that WTA is significantly lower after correction (475.98

vs. 523.47, p < 0.01). WTP gives a less straightforward result, as we observe contrasting

results for the two lotteries: for L1 we find a higher but insignificant WTP after correction

(425.76 vs 415.32, p > 0.10), and for L2 we find a significantly lower WTP after correction

(396.77 vs 407.70, p < 0.01). On average this results in a statistically significant, but only

very slightly lower WTP after correction for mechanism complexity with dummy variables

(411.27 vs 411.51, p < 0.01).

Additionally, including the R-range gives similar results as for the earlier analyses. We

find a significant reduction when considering mechanism complexity together with both the

uncorrected R-range (56.07 vs 111.96, p < 0.01) and the mechanism complexity corrected

R-range (55.01 vs 111.96, p < 0.01), which corresponds to a reduction of about 50%.
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Lottery
Correcting for each deviation

Before mechanism with uncorrected with corrected
correction complexity only R-range R-range

WTA

L1 527.54 478.27∗∗∗ 474.56∗∗∗ 474.45∗∗∗

(243.92) (214.06) (213.95) (213.88)

L2 519.40 473.70∗∗∗ 469.42∗∗∗ 470.10∗∗∗

(247.26) (224.31) (224.19) (224.19)

Average 523.47 475.98∗∗∗ 470.46∗∗∗ 470.43∗∗∗

(226.40) (197.74) (197.57) (197.49)

WTP

L1 415.32 425.76 429.99∗∗∗ 431.35∗∗∗

(252.29) (222.41) (222.28) (222.11)

L2 407.70 396.77∗∗∗ 397.04 396.79
(253.78) (220.69) (220.69) (220.69)

Average 411.51 411.27∗∗∗ 414.39∗∗∗ 415.42∗∗∗

(234.84) (200.78) (200.72) (200.65)

L1 112.22 52.51∗∗∗ 44.56∗∗∗ 43.10∗∗∗

(275.34) (264.23) (263.73) (263.29)
WTA-WTP L2 111.70 76.92∗∗∗ 72.38∗∗∗ 73.30∗∗∗

gap (275.10) (264.12) (263.99) (263.02)

Average 111.96 64.72∗∗∗ 56.07∗∗∗ 55.01∗∗∗

(242.99) (230.66) (230.18) (229.90)

Table D.1: WTA, WTP, and WTA-WTP gap before and after correcting for mechanism
complexity by including each deviation as a dummy variable. The first model includes
mechanism complexity only, the second and third model additionally control for valuation
complexity by including the uncorrected R-range and the corrected R-range, respectively.
The corrected R-range controls for mechanism complexity with dummy variables for each
deviation. Wilcoxon signed-rank tests were performed to test the significance of the dif-
ference between the WTA, WTP, and WTA-WTP gap before and after the correction, *
p < 0.10, ** p < 0.05, *** p < 0.01.
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E Appendix: Robustness check across performance in matrix
reasoning

We performed a robustness check by taking a median split of our sample based on the

performance on the matrix reasoning questions (median = 3.5) and performed the analysis

separately for those subjects who performed above median (N = 618) and those who

performed below median (N = 618).

Above median in matrix reasoning performance
L1 L2 Average Sure

WTA 524.19 514.95 519.57 504.30
(210.59) (214.93) (195.33) (18.37)

WTP 401.27 393.22 397.25 496.05
(217.04) (219.37) (201.21) (20.85)

The WTA-WTP gap 122.92∗∗∗ 121.72∗∗∗ 122.32∗∗∗ 8.25∗∗∗

(252.77) (261.23) (230.37) (24.83)

Below median in matrix reasoning performance
L1 L2 Average Sure

WTA 530.89 523.85 527.37 505.86
(273.35) (275.93) (253.80) (22.38)

WTP 429.37 422.17 425.77 497.21
(282.67) (283.49) (263.63) (24.33)

The WTA-WTP gap 101.52∗∗∗ 101.68∗∗∗ 101.60∗∗∗ 8.65∗∗∗

(296.02) (288.17) (254.76) (29.15)

Table E.1: Means of the WTA, the WTP, and the WTA-WTP gap for L1, L2, the average
across the two lotteries, and the sure payment. Wilcoxon signed-rank tests were performed
to test the significance of the difference between WTA and WTP. * p < 0.10, ** p < 0.05,
*** p < 0.01.
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Above median in matrix reasoning performance

Lottery
Correcting mechanism complexity

Before theoretically for deviations for deviations
correction different slopes

WTA

L1 524.19 502.68∗∗∗ 502.95∗∗∗ 495.83
(210.59) (223.98) (190.02) (189.77)

L2 514.95 489.42∗∗∗ 496.48∗ 492.10
(214.93) (239.42) (199.92) (199.83)

Average 519.57 496.05∗∗∗ 499.72∗ 493.96
(195.33) (209.61) (175.94) (175.77)

WTP

L1 401.27 417.13∗∗∗ 418.42 416.10
(217.04) (230.91) (197.24) (197.22)

L2 393.22 409.87∗∗ 409.59 399.58∗∗∗

(219.37) (236.48) (201.61) (201.28)

Average 397.25 413.50∗∗∗ 414.01 407.84
(201.21) (209.43) (180.70) (180.56)

L1 122.92 85.55∗∗∗ 84.53∗∗∗ 79.73∗∗∗

(252.77) (289.90) (242.00) (242.25)
WTA-WTP L2 121.72 79.55∗∗∗ 86.89∗∗∗ 92.51∗∗∗

gap (261.23) (310.20) (251.21) (251.53)

Average 122.37 82.55∗∗∗ 85.71∗∗∗ 86.12∗∗∗

(230.37) (267.50) (218.72) (219.00)

Below median in matrix reasoning performance

Lottery
Correcting mechanism complexity

Before theoretically for deviations for deviations
correction different slopes

WTA

L1 530.89 506.72∗∗∗ 497.37∗∗∗ 478.93∗∗∗

(273.35) (287.40) (241.55) (241.00)

L2 523.85 492.63∗∗∗ 495.29∗∗∗ 488.43∗∗∗

(275.93) (306.40) (253.48) (253.40)

Average 527.37 499.67∗∗∗ 496.33 483.68∗∗∗

(253.80) (267.75) (224.45) (224.16)

WTP

L1 429.37 433.87 444.31∗ 469.96∗∗∗

(282.67) (284.66) (250.77) (249.96)

L2 422.17 425.94∗ 437.45∗∗∗ 446.16∗∗∗

(283.49) (289.56) (250.12) (250.03)

Average 425.77 429.90 440.88∗∗∗ 458.06∗∗∗

(263.63) (263.41) (228.23) (227.83)

L1 101.52 72.85 53.06∗∗∗ 8.97∗∗∗

(296.02) (333.17) (284.87) (283.46)
WTA-WTP L2 101.68 66.69∗ 57.83∗∗∗ 42.27

gap (288.17) (337.36) (278.28) (278.78)

Average 101.60 69.77∗ 55.45∗∗∗ 25.62∗∗∗

(254.76) (290.58) (242.59) (242.58)

Table E.2: WTA, WTP, and WTA-WTP gap before and after each of the three correction
methods. Wilcoxon signed-rank tests were performed to test the significance of the differ-
ence between the WTA, WTP, and WTA-WTP gap before the correction and after the
correction, * p < 0.10, ** p < 0.05, *** p < 0.01.
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Above median in matrix reasoning performance

Lottery
Before After controlling for

controlling R-range mechanism complexity
for R-range corrected R-range

WTA

L1 524.19 515.01∗∗∗ 519.59∗∗∗

(210.59) (210.08) (210.33

L2 514.95 516.00∗∗∗ 518.03∗∗∗

(214.93) (214.92) (214.80)

Average 519.57 512.68∗∗∗ 517.36∗∗∗

(195.33) (195.10) (195.28)

WTP

L1 401.27 401.85∗∗∗ 405.62∗∗∗

(217.04) (217.04) (216.81)

L2 393.22 403.55∗∗∗ 404.60∗∗∗

(219.37) (218.74) (217.66)

Average 397.25 404.74∗∗∗ 408.44∗∗∗

(201.21) (200.95) (199.98)

L1 122.92 113.16∗∗∗ 113.97∗∗∗

(252.77) (252.28) (251.94)
WTA-WTP L2 121.72 112.45∗∗∗ 113.42∗∗∗

gap (261.23) (260.80) (260.46)

Average 122.37 107.94∗∗∗ 108.91∗∗∗

(230.37) (229.50) (228.82)

Below median in matrix reasoning performance

Lottery
Before After controlling for

controlling R-range mechanism complexity
for R-range corrected R-range

WTA

L1 530.89 524.43∗∗∗ 526.39
(273.35) (273.11) (272.88)

L2 523.85 513.12∗∗∗ 517.01
(275.93) (275.31) (275.26)

Average 527.37 517.22∗∗∗ 520.20∗∗∗

(253.80) (253.35) (253.13)

WTP

L1 429.37 440.16∗∗∗ 435.71∗∗∗

(282.67) (282.02) (281.78)

L2 422.17 423.44∗∗∗ 422.48∗∗∗

(283.49) (283.48) (283.49)

Average 425.77 434.06∗∗∗ 431.19∗∗∗

(263.63) (263.33) (263.26)

L1 101.52 84.27∗∗∗ 90.68
(296.02) (294.43) (293.52)

WTA-WTP L2 101.68 89.68∗∗∗ 94.53∗∗∗

gap (288.17) (287.44) (287.48)

Average 101.60 83.17∗∗∗ 89.01∗∗∗

(254.76) (253.27) (252.69)

Table E.3: The WTA, the WTP, and the WTA-WTP gap before and after controlling for the
(corrected) R-range. Wilcoxon signed-rank tests were performed to test the significance of the
difference between the WTA, WTP, and WTA-WTP gap before and after controlling for R-range,
* p < 0.10, ** p < 0.05, *** p < 0.01.
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Above median in matrix reasoning performance

Lottery Before After controlling for both forms of complexity
controlling Model 1 Model 2 Model 3 Model 4

WTA

L1 524.19 496.83∗∗∗ 491.39∗∗∗ 498.26∗∗∗ 492.04∗∗∗

(210.59) (189.76) (189.58) (189.72) (189.51)

L2 514.95 499.66∗ 495.26 499.15 494.81
(214.93) (199.85) (199.75) (199.82) (199.73)

Average 519.57 496.28∗∗∗ 491.46∗∗∗ 497.10∗∗∗ 491.60∗∗∗

(195.33) (175.88) (175.73) (175.87) (175.70)

WTP

L1 401.27 417.97 415.62 420.72∗∗∗ 418.63∗∗∗

(217.04) (197.24) (197.22) (197.17) (197.15)

L2 393.22 418.4∗∗∗ 408.23∗∗∗ 418.52∗∗∗ 408.78∗∗∗

(219.37) (201.10) (200.74) (200.40) (200.09)

Average 397.25 419.83∗∗∗ 413.63∗∗∗ 422.07∗∗∗ 416.45∗∗∗

(201.21) (180.51) (180.37) (179.95) (179.84)

L1 122.92 78.87∗∗∗ 75.76∗∗∗ 77.54∗∗∗ 73.41∗∗∗

(252.77) (241.75) (242.01) (241.46) (241.72)
WTA-WTP L2 121.72 81.21∗∗∗ 87.03∗∗∗ 80.62∗∗∗ 86.03∗∗∗

gap (261.23) (251.07) (251.41) (250.68) (250.98)

Average 122.37 76.45∗∗∗ 77.83∗∗∗ 75.03∗∗∗ 75.15∗∗∗

(230.37) (218.28) (218.63) (217.63) (217.92)

Below median in matrix reasoning performance

Lottery Before After controlling for both forms of complexity
controlling Model 1 Model 2 Model 3 Model 4

WTA

L1 530.89 496.92∗∗∗ 478.58∗∗∗ 496.19∗∗∗ 477.88∗∗∗

(273.35) (241.55) (240.99) (241.51) (240.96)

L2 523.85 484.48∗∗∗ 477.48∗∗∗ 488.39∗∗∗ 481.46∗∗∗

(275.93) (252.80) (252.72) (252.74) (252.67)

Average 527.37 490.04∗∗∗ 477.44∗∗∗ 491.75∗∗∗ 479.22∗∗∗

(253.80) (224.24) (223.96) (224.11) (223.84)

WTP

L1 429.37 453.88∗∗∗ 478.10∗∗∗ 449.86∗∗∗ 474.21∗∗∗

(282.67) (250.19) (249.44) (249.98) (249.24)

L2 422.17 431.90∗ 441.19∗∗∗ 433.18 442.82∗∗∗

(283.49) (249.94) (249.83) (249.82) (249.71)

Average 425.77 443.72∗∗∗ 460.04∗∗∗ 442.58∗∗∗ 459.10∗∗∗

(263.63) (228.19) (227.81) (228.18) (227.80)

L1 101.52 43.05∗∗∗ 0.49∗∗∗ 46.33∗∗∗ 3.67∗∗∗

(296.02) (284.27) (282.95) (283.72) (282.43)
WTA-WTP L2 101.68 52.58∗∗∗ 36.29∗∗∗ 55.21∗∗∗ 38.64∗∗∗

gap (288.17) (278.28) (278.83) (278.39) (278.94)

Average 101.60 46.32∗∗∗ 17.40∗∗∗ 49.17∗∗∗ 20.12∗∗∗

(254.76) (242.09) (242.13) (241.88) (241.93)

Table E.4: The WTA, WTP, and WTA-WTP gap before and after controlling for both
forms of complexity in two groups based on their performance in matrix reasoning ques-
tions. In Model 1 and 3 mechanism complexity is deviations from the optimal response,
while in Model 2 and 4 mechanism complexity is deviations from the optimal response
while allowing for different slopes for positive and negative deviations. In Model 1 and 2
the R-range is uncorrected, and in Model 3 and 4 the R-range is mechanism complexity
corrected. Wilcoxon signed-rank tests were performed to test the significance of the dif-
ference between the WTA, WTP, and WTA-WTP gap before the correction and after the
correction, * p < 0.10, ** p < 0.05, *** p < 0.01.
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Above median in matrix reasoning performance (N = 306)

Lottery Before Controlling Combined Combined Combined Combined
controlling λ (Model 3) (Model 3)+λ (Model 4) (Model 4)+λ

WTA

L1 518.91 525.39∗∗∗ 494.15 495.34∗∗∗ 490.16 491.30∗∗∗

(213.48) (213.43) (189.36) (189.35) (189.28) (189.28)

L2 516.18 504.59∗∗∗ 507.93 491.44∗∗∗ 501.92 485.37∗∗∗

(216.70) (216.55) (200.84) (200.52) (200.71) (200.38)

Average 517.54 514.99∗∗∗ 498.42 491.59∗∗∗ 492.59 485.66∗∗∗

(198.57) (198.56) (177.70) (177.64) (177.54) (177.48)

WTP

L1 402.04 462.96∗∗∗ 413.57 450.85∗∗∗ 416.48 454.98∗∗∗

(209.94) (208.13) (185.89) (185.12) (185.86) (185.08)

L2 395.83 455.95∗∗∗ 423.42 452.51∗∗∗ 410.61 439.05∗∗∗

(222.43) (220.76) (197.70) (197.25) (197.22) (196.81)

Average 398.94 459.46∗∗∗ 421.26 456.02∗∗∗ 416.60 451.60∗∗∗

(200.63) (198.75) (174.95) (174.23) (174.88) (174.17)

L1 116.87 62.43∗∗∗ 80.59 44.48∗∗∗ 73.67 36.32∗∗∗

WTA (247.44) (247.14) (233.24) (233.06) (233.28) (233.01)
-WTP L2 120.34 48.64∗∗∗ 84.51 38.93∗∗∗ 91.31 46.32∗∗∗

gap (257.05) (254.78) (250.08) (248.72) (250.75) (249.35)

Average 118.61 55.53∗∗∗ 77.16 35.57∗∗∗ 76.00 34.06∗∗∗

(224.42) (223.01) (212.53) (211.66) (212.96) (212.01)

Below median in matrix reasoning performance (N = 227)

Lottery Before Controlling Combined Combined Combined Combined
controlling λ (Model 3) (Model 3)+λ (Model 4) (Model 4)+λ

WTA

L1 513.99 507.81∗∗∗ 487.38 479.48∗∗∗ 467.87 461.12∗∗∗

(266.69) (266.65) (238.10) (238.03) (237.42) (237.36)

L2 511.89 520.30∗∗∗ 478.13 483.01∗∗∗ 468.66 473.84∗∗∗

(274.61) (274.54) (250.40) (250.38) (250.25) (250.22)

Average 512.94 514.06∗∗∗ 482.17 481.00∗∗∗ 468.88 468.42∗∗∗

(255.54) (255.54) (227.88) (227.88) (227.55) (227.55)

WTP

L1 434.86 425.88∗∗∗ 447.53 424.66∗∗∗ 461.46 439.03∗∗∗

(282.08) (282.05) (251.76) (251.48) (251.49) (251.25)

L2 420.21 412.41∗∗∗ 425.16 401.06∗∗∗ 446.46 423.56∗∗∗

(279.50) (279.47) (251.86) (251.56) (251.25) (251.00)

Average 427.53 419.15∗∗∗ 435.32 411.37∗∗∗ 454.57 431.56∗∗∗

(265.76) (265.73) (235.35) (235.03) (234.79) (234.52)

L1 79.13 81.94∗∗∗ 39.85 54.82∗∗∗ 6.41 22.09∗∗∗

WTA (295.06) (295.16) (285.48) (285.67) (285.64) (285.80)
-WTP L2 91.69 107.88∗∗∗ 52.98 81.94∗∗∗ 22.20 50.28∗∗∗

gap (295.68) (295.57) (279.10) (279.03) (279.79) (279.70)

Average 85.41 94.91∗∗∗ 46.85 69.63∗∗∗ 14.32 36.86∗∗∗

(267.62) (267.67) (253.13) (253.24) (253.52) (253.59)

Table E.5: WTA, WTP, and WTA-WTP gap before and after controlling for mechanism
complexity and the (MC corrected) R-range as well as the loss aversion coefficient λ. In
Controlling for λ we consider only the loss aversion λ in the regression. Combined models
(Model 3 and Model 4) are those defined in Table D.4, which control for both mechanism
complexity and the (MC corrected) R-range. In Combined (Model 3 or 4) +λ, we include
additionally λ. The sample used for this part consist of 306 and 227 subjects, above
and below median performance respectively, who overlap with the study from which we
obtained the loss aversion measure. Wilcoxon signed-rank tests were performed to test the
significance of the difference between the WTA, WTP, and WTA-WTP gap before and
after the inclusion of λ, * p < 0.10, ** p < 0.05, *** p < 0.01.
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F Appendix: Regressions to control WTA and WTP for mech-
anism complexity or/and valuation complexity

WTA
Explanatory variables L1 L2 Average

(WTAsure − 500)
5.40∗∗∗ 4.64∗∗∗ 5.02∗∗∗

(0.30) (0.32) (0.28)

Intercept 500.09∗∗∗ 495.82∗∗∗ 497.95∗∗∗

(6.37) (6.69) (5.91)
Adjusted R2 0.21 0.15 0.21

WTP
Explanatory variables L1 L2 Average

(500−WTPsure)
−4.94∗∗∗ −4.93∗∗∗ −4.94∗∗∗

(0.28) (0.29) (0.26)

Intercept 431.97∗∗∗ 424.30∗∗∗ 428.13∗∗∗

(6.50) (6.56) (5.94)
Adjusted R2 0.20 0.19 0.23

Table F.1: Regression results for WTA and WTP correction for mechanism complexity
using the deviation from the optimal responses for the WTA and WTP of the sure payment
as a continuous variable. * p < 0.10, ** p < 0.05, *** p < 0.01.

WTA
Explanatory variables L1 L2 Average

(WTAsure − 500)
6.05∗∗∗ 4.94∗∗∗ 5.50∗∗∗

(0.44) (0.46) (0.41)

Dneg(WTAsure − 500) −1.70∗∗ −0.80 −1.25
(0.85) (0.90) (0.79)

Intercept 488.82∗∗∗ 490.50∗∗∗ 489.66∗∗∗

(8.51) (8.95) (7.90)
Adjusted R2 0.21 0.15 0.21

WTP
Explanatory variables L1 L2 Average

(500−WTPsure)
−5.27∗∗∗ −4.63∗∗∗ −4.95∗∗∗

(0.46) (0.47) (0.50)

Dneg(500−WTPsure)
0.74 −0.70 0.02

(0.84) (0.84) (0.76)

Intercept 438.02∗∗∗ 418.60∗∗∗ 428.31∗∗∗

(9.41) (9.49) (8.60)
Adjusted R2 0.20 0.19 0.23

Table F.2: Regression results for WTA and WTP correction for mechanism complexity
using the deviation from the optimal responses for the WTA and WTP of the sure pay-
ment as a continuous variable while allowing for different slopes for positive and negative
deviations. * p < 0.10, ** p < 0.05, *** p < 0.01.
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WTA
Explanatory variables L1 L2 Average

R-range 0.08∗ 0.05 0.08∗

(0.04) (0.04) (0.04)

Intercept 519.84∗∗∗ 514.30∗∗∗ 514.92∗∗∗

(8.06) (8.21) (7.84)
Adjusted R2 0.002 0.000 0.002

WTP
Explanatory variables L1 L2 Average

R-range −0.06 −0.05 −0.08∗

(0.04) (0.04) (0.04)

Intercept 421.55∗∗∗ 413.37∗∗∗ 419.62∗∗∗

(8.35) (8.43) (8.13)
Adjusted R2 0.001 0.001 0.002

Table F.3: Regression results for controlling WTA and WTP for the R-Range. * p < 0.10,
** p < 0.05, *** p < 0.01.

Upper bound
Explanatory variables L1 L2 Average

(Uppersure − 500)
4.96∗∗∗ 4.71∗∗∗ 4.84∗∗∗

(0.46) (0.45) (0.40)

Intercept 510.30∗∗∗ 498.61∗∗∗ 504.45∗∗∗

(7.74) (7.59) (6.75)
Adjusted R2 0.12 0.12 0.15

Lower bound
Explanatory variables L1 L2 Average

(500−Lowersure)
−4.14∗∗∗ −4.18∗∗∗ −4.16∗∗∗

(0.48) (0.47) (0.42)

Intercept 459.92∗∗∗ 443.78∗∗∗ 451.85∗∗∗

(7.76) (7.58) (6.72)
Adjusted R2 0.08 0.09 0.11

Table F.4: Regression results for R-range correction for mechanism complexity using the
deviation from the optimal responses for the randomization task of the sure payment as
a continuous variable. For this regression subjects who did not choose the randomization
option for the sure lottery and reported an upper bound and lower bound other than 501
and 499, respectively, are excluded. * p < 0.10, ** p < 0.05, *** p < 0.01.
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WTA
Explanatory variables L1 L2 Average

R-range after MC 0.07∗ 0.03 0.07
correction (0.04) (0.04) (0.05)

Intercept 523.27∗∗∗ 517.64∗∗∗ 519.13∗∗∗

(7.37) (7.54) (7.04)
Adjusted R2 0.002 0.000 0.001

WTP
Explanatory variables L1 L2 Average

R-range after MC −0.11∗∗ −0.09∗∗ −0.15∗∗∗

correction (0.04) (0.04) (0.05)

Intercept 421.84∗∗∗ 413.54∗∗∗ 420.44∗∗∗

(7.61) (7.73) (7.29)
Adjusted R2 0.004 0.003 0.006

Table F.5: Regression results for controlling WTA and WTP for the R-Range after the
correction for mechanism complexity using deviations from the optimal upper and lower
bound of the sure payment as a continuous variable. * p < 0.10, ** p < 0.05, *** p < 0.01.

WTA
Explanatory variables L1 L2 Average

(WTAsure − 500)
5.39∗∗∗ 4.64∗∗∗ 5.00∗∗∗

(0.30) (0.32) (0.28)

R-range (uncorrected) 0.03 0.04 0.05
(0.04) (0.04) (0.04)

Intercept 496.95∗∗∗ 491.81∗∗∗ 493.06∗∗∗

(7.31) (7.74) (7.10)
Adjusted R2 0.21 0.15 0.21

WTP
Explanatory variables L1 L2 Average

(500−WTPsure)
−4.94∗∗∗ −4.92∗∗∗ −4.92∗∗∗

(0.28) (0.29) (0.26)

R-range (uncorrected) −0.05 −0.02 −0.04
(0.04) (0.04) (0.04)

Intercept 437.00∗∗∗ 425.90∗∗∗ 432.68∗∗∗

(7.53) (7.61) (7.19)
Adjusted R2 0.20 0.19 0.23

Table F.6: Regression results for WTA and WTP correction for mechanism complexity
(continuous deviations from the optimal WTA and WTP of the sure payment) and the
uncorrected R-Range combined. * p < 0.10, ** p < 0.05, *** p < 0.01.
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WTA
Explanatory variables L1 L2 Average

(WTAsure − 500)
6.01∗∗∗ 4.93∗∗∗ 5.46∗∗∗

(0.44) (0.46) (0.41)

Dneg(WTAsure − 500) −1.65∗ −0.78 −1.20
(0.85) (0.90) (0.79)

R-range (uncorrected) 0.03 0.04 0.04
(0.04) (0.04) (0.04)

Intercept 486.45∗∗∗ 486.69∗∗∗ 485.40∗∗∗

(9.10) (9.71) (8.71)
Adjusted R2 0.21 0.15 0.21

WTP
Explanatory variables L1 L2 Average

(500−WTPsure)
−5.26∗∗∗ −4.61∗∗∗ −4.92∗∗∗

(0.46) (0.47) (0.42)

Dneg(500−WTPsure)
0.73 −0.72 −0.01

(0.84) (0.84) (0.76)

R-range (uncorrected) −0.05 −0.02 −0.04
(0.04) (0.04) (0.04)

Intercept 442.88∗∗∗ 420.21∗∗∗ 432.60∗∗∗

(10.12) (10.13) (9.41)
Adjusted R2 0.20 0.19 0.23

Table F.7: Regression results for WTA and WTP correction for mechanism complexity
(continuous deviations from the optimal WTA and WTP of the sure payment while allowing
for different slopes for positive and negative deviations) and the uncorrected R-Range
combined. * p < 0.10, ** p < 0.05, *** p < 0.01.
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WTA
Explanatory variables L1 L2 Average

WTAsure − 500
5.39∗∗∗ 4.64∗∗∗ 5.01∗∗∗

(0.30) (0.32) (0.28)
R-range after mechanism 0.04 0.03 0.06

complexity correction (0.04) (0.04) (0.04)

Intercept 497.57∗∗∗ 493.75∗∗∗ 494.58∗∗∗

(6.73) (7.15) (6.43)
Adjusted R2 0.21 0.15 0.21

WTP
Explanatory variables L1 L2 Average

(500−WTPsure)
−4.92∗∗∗ −4.91∗∗∗ −4.90∗∗∗

(0.28) (0.29) (0.26)
R-range after mechanism −0.09∗∗ −0.04 −0.09∗∗

complexity correction (0.04) (0.04) (0.04)

Intercept 436.89∗∗∗ 426.52∗∗∗ 433.37∗∗∗

(6.88) (6.99) (6.46)
Adjusted R2 0.20 0.19 0.23

Table F.8: Regression results for WTA and WTP correction for mechanism complexity
(continuous deviations from the optimal WTA and WTP of the sure payment) and the
R-Range after mechanism complexity correction (continuous deviations from the optimal
upper and lower bound of the sure payment) combined. * p < 0.10, ** p < 0.05, ***
p < 0.01.
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WTA
Explanatory variables L1 L2 Average

(WTAsure − 500)
6.02∗∗∗ 4.95∗∗∗ 5.49∗∗∗

(0.44) (0.46) (0.41)

Dneg(WTAsure − 500) −1.67∗ −0.82 −1.24
(0.85) (0.90) (0.79)

R-range after mechanism 0.04 0.03 0.06
complexity correction (0.04) (0.04) (0.04)

Intercept 486.62∗∗∗ 488.30∗∗∗ 486.37∗∗∗

(8.74) (9.33) (8.29)
Adjusted R2 0.21 0.15 0.21

WTP
Explanatory variables L1 L2 Average

(500−WTPsure)
−5.26∗∗∗ −4.60∗∗∗ −4.91∗∗∗

(0.46) (0.47) (0.42)

Dneg(500−WTPsure)
0.78 −0.72 0.02

(0.83) (0.84) (0.76)
R-range after mechanism −0.09∗∗ −0.04 −0.09∗∗

complexity correction (0.04) (0.04) (0.04)

Intercept 443.26∗∗∗ 420.73∗∗∗ 433.52∗∗∗

(9.70) (9.76) (8.96)
Adjusted R2 0.20 0.19 0.23

Table F.9: Regression results for WTA and WTP correction for mechanism complexity
(continuous deviations from the optimal WTA and WTP of the sure payment while allowing
for different slopes for positive and negative deviations), and the R-range after mechanism
complexity correction (continuous deviations from the optimal upper and lower bound of
the sure payment) combined. * p < 0.10, ** p < 0.05, *** p < 0.01.

WTA
Explanatory variables L1 L2 Average

λ
−0.26 0.95 0.35
(6.40) (6.55) (6.04)

Intercept 517.39∗∗∗ 512.21∗∗∗ 514.80∗∗∗

(17.71) (18.12) (16.74)
Adjusted R2 0.000 0.000 0.000

WTP
Explanatory variables L1 L2 Average

1/λ
50.24 49.90 50.07

(38.70) (39.47) (36.67)

Intercept 444.56∗∗∗ 434.57∗∗∗ 439.56∗∗∗

(24.38) (24.87) (23.10)
Adjusted R2 0.001 0.001 0.002

Table F.10: Regression results for WTA and WTP correction for loss aversion. WTA is
corrected for λ and WTP for 1/λ. * p < 0.10, ** p < 0.05, *** p < 0.01.
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WTA
Explanatory variables L1 L2 Average

λ
1.28 2.20 1.79

(5.71) (6.06) (5.42)

WTAsure − 500
5.37∗∗∗ 4.63∗∗∗ 4.99∗∗∗

(0.46) (0.49) (0.44)
R-range after mechanism 0.03 0.01 0.06

complexity correction (0.05) (0.06) (0.06)

Intercept 489.03∗∗∗ 488.99∗∗∗ 486.79∗∗∗

(16.37) (17.38) (15.69)
Adjusted R2 0.20 0.14 0.20

WTP
Explanatory variables L1 L2 Average

1/λ
15.62 14.60 15.53

(34.70) (35.76) (32.51)

(500−WTPsure)
−4.96∗∗∗ −4.76∗∗∗ −4.86∗∗∗

(0.43) (0.44) (0.40)
R-range after mechanism −0.05 −0.11 −0.09

complexity correction (0.05) (0.06) (0.06)

Intercept 439.10∗∗∗ 432.12∗∗∗ 436.39∗∗∗

(22.16) (22.73) (20.83)
Adjusted R2 0.20 0.19 0.22

Table F.11: Regression results for WTA and WTP correction for loss aversion, mechanism
complexity (continuous deviations from the optimal WTA and WTP of the sure payment),
and the R-range after mechanism complexity correction (continuous deviations from the
optimal upper and lower bound of the sure payment) combined. WTA is corrected for λ
and WTP for 1/λ. * p < 0.10, ** p < 0.05, *** p < 0.01.
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WTA
Explanatory variables L1 L2 Average

λ
1.18 2.12 1.70

(5.71) (6.07) (5.42)

WTAsure − 500
5.90∗∗∗ 5.08∗∗∗ 5.47∗∗∗

(0.69) (0.73) (0.65)

Dneg(WTAsure − 500) −1.32 −1.11 −1.22
(1.28) (1.35) (1.21)

R-range after mechanism 0.03 0.01 0.06
complexity correction (0.05) (0.06) (0.06)

Intercept 480.83∗∗∗ 481.78∗∗∗ 479.06∗∗∗

(18.18) (19.46) (17.45)
Adjusted R2 0.20 0.14 0.20

WTP
Explanatory variables L1 L2 Average

1/λ
16.82 13.87 15.74

(34.79) (35.89) (32.60)

(500−WTPsure)
−5.29∗∗∗ −4.55∗∗∗ −4.92∗∗∗

(0.70) (0.73) (0.66)

Dneg(500−WTPsure)
0.72 −0.44 0.13

(1.22) (1.26) (1.15)
R-range after mechanism −0.05 −0.11∗ −0.09

complexity correction (0.05) (0.06) (0.06)

Intercept 445.41∗∗∗ 428.17∗∗∗ 437.50∗∗∗

(24.65) (25.40) (23.22)
Adjusted R2 0.20 0.19 0.22

Table F.12: Regression results for WTA and WTP correction for loss aversion, mechanism
complexity (continuous deviations from the optimal WTA and WTP of the sure payment
while allowing for different slopes for positive and negative deviations), and the R-range
after mechanism complexity correction (continuous deviations from the optimal upper and
lower bound of the sure payment) combined. WTA is corrected for λ and WTP for 1/λ. *
p < 0.10, ** p < 0.05, *** p < 0.01.
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G Appendix: Experimental materials

Figure G.1: Example of the WTA task for L1.
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Figure G.2: Example of the WTP task for L1.
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Figure G.3: Example of the WTA and WTP task for the sure payment.
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Figure G.4: Example of the R-range task for L1.
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Figure G.5: Example of the matrix reasoning questions.

Figure G.6: Desirability of Control statements.
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